Browsing by Subject "Valine"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Cytocidal amino acid starvation of Saccharomyces cerevisiae and Candida albicans acetolactate synthase (ilv2{Delta}) mutants is influenced by the carbon source and rapamycin.(Microbiology, 2010-03) Kingsbury, Joanne M; McCusker, John HThe isoleucine and valine biosynthetic enzyme acetolactate synthase (Ilv2p) is an attractive antifungal drug target, since the isoleucine and valine biosynthetic pathway is not present in mammals, Saccharomyces cerevisiae ilv2Delta mutants do not survive in vivo, Cryptococcus neoformans ilv2 mutants are avirulent, and both S. cerevisiae and Cr. neoformans ilv2 mutants die upon isoleucine and valine starvation. To further explore the potential of Ilv2p as an antifungal drug target, we disrupted Candida albicans ILV2, and demonstrated that Ca. albicans ilv2Delta mutants were significantly attenuated in virulence, and were also profoundly starvation-cidal, with a greater than 100-fold reduction in viability after only 4 h of isoleucine and valine starvation. As fungicidal starvation would be advantageous for drug design, we explored the basis of the starvation-cidal phenotype in both S. cerevisiae and Ca. albicans ilv2Delta mutants. Since the mutation of ILV1, required for the first step of isoleucine biosynthesis, did not suppress the ilv2Delta starvation-cidal defects in either species, the cidal phenotype was not due to alpha-ketobutyrate accumulation. We found that starvation for isoleucine alone was more deleterious in Ca. albicans than in S. cerevisiae, and starvation for valine was more deleterious than for isoleucine in both species. Interestingly, while the target of rapamycin (TOR) pathway inhibitor rapamycin further reduced S. cerevisiae ilv2Delta starvation viability, it increased Ca. albicans ilv1Delta and ilv2Delta viability. Furthermore, the recovery from starvation was dependent on the carbon source present during recovery for S. cerevisiae ilv2Delta mutants, reminiscent of isoleucine and valine starvation inducing a viable but non-culturable-like state in this species, while Ca. albicans ilv1Delta and ilv2 Delta viability was influenced by the carbon source present during starvation, supporting a role for glucose wasting in the Ca. albicans cidal phenotype.Item Unknown Lipid changes in the metabolome of a single case study with maple syrup urine disease (MSUD) after five days of improved diet adherence of controlled branched-chain amino acids (BCAA).(Molecular genetics and metabolism reports, 2020-12) Douglas, Teresa D; Newby, L Kristin; Eckstrand, Julie; Wixted, Douglas; Singh, Rani HBackground
Distinguishing systemic metabolic disruptions in maple syrup urine disease (MSUD) beyond amino acid pathways is under-investigated, yet important to understanding disease pathology and treatment options.Methods
An adolescent female (15 years) with MSUD without liver transplant, attended 2 study visits, 5 days apart. Medical diet adherence was determined based on her 3-day diet records and plasma branched-chain amino acid (BCAA) concentrations at both study visits. Plasma from a single age- and sex-matched control (MURDOCK Study, Duke University) and the case patient were analyzed with UPLC/MS/MS for intensity (m/z), annotated, and normalized against a median of 1 (Metabolon, Morrisville NC). Differences between case/control and 5-day comparisons were defined as ≥ ǀ 0.5 ǀ.Results
434 lipid metabolites were identified across samples; 90 (20.7%) were higher and 120 (27.6%) lower in the MSUD case at baseline compared with control. By study visit 2, plasma BCAA had declined, while 48 (53%) of elevated lipids and 14 (11.7%) of lower lipid values had moved to within ǀ 0.5 ǀ of control. Most shifts towards control by day 5 were seen in long-chain fatty acid intermediates (42%) and acylcarnitines (32%). Although androgenic (28%) and bile acid (23%) metabolites increased towards control, neither reached control level by day 5.Discussion
This comparative metabolomics study in a single MSUD case and healthy control suggests intrinsic differences in MSUD lipid metabolism potentially influenced by therapeutic diet. Findings suggest influences on hormone regulation, fatty acid oxidation, and bile acid synthesis, but further studies are needed to confirm an association between MSUD and lipid dysregulation.Synopsis
Within 5 days of improved dietary adherence, a single MSUD case experienced substantial changes in lipid markers potentially related to changes in plasma branched-chain amino acids.