Browsing by Subject "Vegetation"
Results Per Page
Sort Options
Item Open Access A novel approach to assess livestock management effects on biodiversity of drylands(Ecological Indicators, 2015-01-01) Chillo, V; Ojeda, RA; Anand, M; Reynolds, JFIn drylands livestock grazing is the main production activity, but overgrazing due to mismanagement is a major cause of biodiversity loss. Continuous grazing around water sources generates a radial gradient of grazing intensity called the piosphere. The ecological sustainability of this system is questionable and alternative management needs to be evaluated. We apply simple indicators of species response to grazing gradients, and we propose a novel methodological approach to compare community response to grazing gradients (double reciprocal analysis). We assessed degradation gradients of biodiversity under different management strategies in semiarid rangelands of the Monte desert (Argentina) by analyzing changes in vegetation, ants and small mammal richness and diversity, and variation due to seasonality. At the species level, we determined the trend in abundance of each species along the gradient, and the potential cross-taxa surrogacy. At the community level, the new methodological consists of assessing the magnitude of biodiversity degradation along different piospheres by comparing the slopes of linear functions obtained by the double reciprocal analysis. We found that most species showed a decreasing trend along the gradient under continuous grazing; while under rotational grazing fewer species showed a decreasing trend, and a neutral trend (no change in the abundance along the gradient of grazing intensity) was the most common. We found that vegetation cannot be used as a surrogacy taxon of animal response. Moreover, weak cross-taxa surrogacy was found only for animal assemblages during the wet season. The double reciprocal analysis allowed for comparison of multi-taxa response under different seasons and management types. By its application, we found that constrains in precipitation interacted with disturbance by increasing the negative effect of grazing on vegetation, but not on animal assemblages. Continuous grazing causes biodiversity loss in all situations. Rotational grazing prevents the occurrence of vegetation degradation and maintains higher levels of animal diversity, acting as an opportunity for biodiversity conservation under current scenarios of land use extensification. Our approach highlights the importance of considering multi-taxa and intrinsic variability in the analysis, and should be of value to managers concerned with biodiversity conservation.Item Open Access Hydrologic Controls on Vegetation: from Leaf to Landscape(2009) Vico, GiuliaTopography, vegetation, nutrient dynamics, soil features and hydroclimatic forcing are inherently coupled, with feedbacks occurring over a wide range of temporal and spatial scales. Vegetation growth may be limited by soil moisture, nutrient or solar radiation availability, and in turn influences both soil moisture and nutrient balances at a point. These dynamics are further complicated in a complex terrain, through a series of spatial interactions. A number of experiments has characterized the feedbacks between soil moisture and vegetation dynamics, but a theoretical framework linking short-term leaf-level to interannual plot-scale dynamics has not been fully developed yet. Such theory is needed for optimal management of water resources in natural ecosystems and for agricultural, municipal and industrial uses. Also, it complements the current knowledge on ecosystem response to the predicted climate change.
In this dissertation, the response of vegetation dynamics to unpredictable environmental fluctuations at multiple space-time scales is explored in a modeling framework from sub-daily to interannual time scales. At the hourly time scale, a simultaneous analysis of photosynthesis, transpiration and soil moisture dynamics is carried out to explore the impact of water stress on different photosynthesis processes at the leaf level, and the overall plant activity. Daily soil moisture and vegetation dynamics are then scaled up to the growing season using a stochastic model accounting for daily to interannual hydroclimatic variability. Such stochastic framework is employed to explore the impact of rainfall patterns and different irrigation schemes on crop productivity, along with their implications in terms of sustainability and profitability. To scale up from point to landscape, a probabilistic representation of local landscape features (i.e., slope and aspect) is developed, and applied to assess the effects of topography on solar radiation. Finally, a minimalistic ecosystem model, including soil moisture, vegetation and nutrient dynamics at the year time scale, is outlined; when coupled to the proposed probabilistic topographic description, the latter model can serve to assess the relevance of spatial interactions and to single out the main biophysical controls responsible for ecohydrological variability at the landscape scale.
Item Open Access Investigating the Eco-Hydrological Impact of Tropical Cyclones in the Southeastern United States(2013) Brun, JulienTropical Cyclones (TCs) intensity and frequency are expected to be impacted by climate change. Despite their destructive potential, these phenomena, which can produce heavy precipitation, are also an important source of freshwater. Therefore any change in frequency, seasonal timing and intensity of TCs is expected to strongly impact the regional water cycle and consequently the freshwater availability and distribution. This is critical, due to the fact that freshwater resources in the US are under stress due to the population growth and economic development that increasingly create more demands from agricultural, municipal and industrial uses, resulting in frequent over-allocation of water resources.
In this study we concentrate on monitoring the impact of hurricanes and tropical storms on vegetation activity along their terrestrial tracks and investigate the underlying physical processes. To characterize and monitor the spatial organization and time of recovery of vegetation disturbance in the aftermath of major hurricanes over the entire southeastern US, a remote sensed framework based on MODIS enhanced vegetation index (EVI) was developed. At the SE scale, this framework was complemented by a water balance approach to estimate the variability in hurricane groundwater recharge capacity spatially and between events. Then we investigate the contribution of TCs (season totals and event by event) to the SE US annual precipitation totals from 2002 to 2011. A water budget approach applied at the drainage basins scale is used to investigate the partitioning of TCs' precipitation into surface runoff and groundwater system in the direct aftermath of major TCs. This framework allows exploring the contribution of TCs to annual precipitation totals and the consequent recharge of groundwater reservoirs across different physiographic regions (mountains, coastal and alluvial plains) versus the fraction that is quickly evacuated through the river network and surface runoff.
Then a Land surface Eco-Hydrological Model (LEHM), combining water and energy budgets with photosynthesis activity, is used to estimate Gross Primary Production (GPP) over the SE US The obtained data is compared to AmeriFlux and MODIS GPP data over the SE United States in order to establish the model's ability to capture vegetation dynamics for the different biomes of the SE US. Then, a suite of numerical experiments is conducted to evaluate the impact of Tropical Cyclones (TCs) precipitation over the SE US. The numerical experiments consist of with and without TC precipitation simulations by replacing the signature of TC forcing by NARR-derived climatology of atmospheric forcing ahead of landfall during the TC terrestrial path. The comparison of these GPP estimates with those obtained with the normal forcing result in areas of discrepancies where the GPP was significantly modulated by TC activity. These areas show up to 10% variability over the last decade.
Item Open Access Nuanced Regional Climate Exposure Assessment for National Parks(2022-04-22) White, Cassidy; Holliday, TayClimate-driven changes in water availability are impacting resources in national parks across the nation. Because the water balance provides relevant, actionable, and interpretable information to managers, the National Parks Service supported development and application of a high temporal and spatial resolution water balance model. This historical and predictive model was used in conjunction with a high-resolution vegetation land cover map to graphically determine the actual evapotranspiration (AET) and water deficit levels associated with vegetation types within a given area. The resulting model estimates how water balance parameters are expected to change under future climate scenarios, suggesting increases in both AET and water deficit. Using this method and Yosemite, Sequoia, and Kings Canyon National Parks as case studies, a water balance approach for identifying vegetation types was created and can be subsequently used by National Park managers in the future.Item Open Access The roles of vegetation, sediment transport, and humans in the evolution of low-lying coastal landforms: Modeling and GIS investigations(2018) Lauzon, RebeccaLow-lying coastal landforms such as barrier islands and river deltas are attractive sites for human habitation and infrastructure. They are also highly vulnerable to both climate change impacts such as rising sea levels or increases in storm intensity and anthropogenic impacts such as changes in sediment supply. In this dissertation I aim to improve understanding of some of the primary drivers of the evolution of low-lying coastal landforms over varying space (1-100s km) and time (decadal to millennial) scales. I focus in Chapter 2 on the influence of shoreline curvature and resulting gradients in alongshore sediment transport on shoreline change; in Chapter 3 on the influence of wave-edge erosion on back-barrier marsh resilience; and in Chapters 4 and 5 on the cohesive effects of vegetation on river deltas.
Sandy coastlines, often associated with low-lying barrier islands that are highly vulnerable to sea level rise and storms, can experience high rates of shoreline change. However, they also attract human habitation, recreation, and infrastructure. Previous research to understand and quantify contributions to shoreline erosion has considered factors such as grain size, underlying geology, regional geography, sea level rise, and anthropogenic modifications. Shoreline curvature is often not considered in such analyses, but subtle shoreline curvature (and associated alongshore variation in relative offshore wave angles) can result in gradients in net alongshore transport which can cause significant erosion or accretion. In Chapter 2, we conducted a spatially extensive analysis of the correlation between shoreline curvature and shoreline change rates for the sandy shorelines of the US East and Gulf coasts. For wave-dominated, sandy coasts where nourishment and shoreline stabilization do not dominate the shoreline change signal, we find a significant negative correlation between shoreline curvature and shoreline change rates over decadal to centurial and 1-5 km temporal and spatial scales. This indicates that some of the coastal erosion observed in these areas can be explained by the smoothing of subtle shoreline curvature by gradients in alongshore transport. In other settings, this signal can be obscured by tidal, anthropogenic, or geologic processes which also influence shoreline erosion. While limited in practical application to long, sandy shorelines with limited human stabilization, these results have widespread implications for the inclusion of shoreline curvature as an important variable in modelling and risk assessment of long-term coastal erosion on sandy, wave-dominated coastlines.
The marshes and bays in the back-barrier environment between barrier islands and the mainland can also experience wave-driven erosion, and their dynamics are coupled to those of barrier islands. Previous results show that overwash provides an important sediment source to back-barrier marshes, sustaining a narrow marsh state under conditions in which marsh drowning would otherwise occur. In Chapter 3, I expand the coupled barrier island-marsh evolution model GEOMBEST+ to explore the effects of wind waves on back-barrier marshes. I find that the addition of marsh-edge erosion leads to wider, more resilient marshes and that horizontal erosion of the marsh edge is a more efficient sediment source than vertical erosion of the marsh surface as it drowns. Where marshes and bays are vertically keeping up with sea level, and the net rate of sediment imported to (or exported from) the basin is known, the rate of marsh-edge erosion or progradation can be predicted knowing only the present basin geometry, sea-level rise rate, and the net rate of sediment input (without considering the erosion or progradation mechanisms). If the rate of sediment input/export is known, this relationship applies whether sediment exchange with the open ocean is negligible (as in basins dominated by riverine sediment input), or is significant (including the loss of sediment remobilized by waves in the bay). Analysis of these results reveals that geometry and stratigraphy can exert a first order control on back-barrier marsh evolution and on the marsh-barrier island system as a whole, and provides new insights into the resilience of back-barrier marshes and on the interconnectedness of the barrier-marsh system.
Coastal wetlands such as marshes are also an important component of river deltas. Like barrier islands, these low-lying landscapes are both attractive to human settlement (providing fertile farmland, fisheries, hydrocarbon reserves, and many other services) and prone to hazards such as flooding and land loss. Delta evolution is governed by complex interactions between coastal, marine, and fluvial processes, many of which are still not well understood. In Chapters 4 and 5, I use the delta-building model DeltaRCM to explore the effects of vegetation, specifically its ability to introduce cohesion, on delta morphology and the dynamics of delta distributary networks. The use of this rule-based model allows me to simplify vegetation dynamics and effects in order to enhance the clarity of potential insights into which processes or interactions may be most important in the context of vegetation as a cohesive agent.
Cohesive sediment exerts a significant influence on delta evolution, increasing shoreline rugosity and decreasing channel mobility. Vegetation has been assumed to play a similar role in delta evolution, but its cohesive effects have not been explicitly studied. In Chapter 4, I use DeltaRCM to directly explore two cohesive effects of vegetation: decreasing lateral transport and increasing flow resistance. I find that vegetation and cohesive sediment do alter delta morphology and channel dynamics in similar ways (e.g. more rugose shorelines, deeper, narrower, less mobile channels), but that vegetation may have additional implications for deltaic sediment retention and stratigraphy, by confining flow and sand in channels. My results suggest that sediment composition is a first-order control on delta morphology but vegetation has a stronger influence on channel mobility timescales. To fully understand the cohesive influences acting on a delta, the influence of vegetation should be considered in addition to fine sediment.
In Chapter 5, I explore the cohesive effects of vegetation on delta evolution under different environmental conditions. The dynamics and evolution of deltas and their channel networks are controlled by interactions between a number of factors, including water and sediment discharge, cohesion from fine sediment and vegetation, and sea level rise rates. Vegetation’s influence on the delta is likely to be significantly impacted by other environmental factors. For example, increasing sea level or sediment discharge increases aggradation rates on the delta, and may result in sediment transport processes such as deposition and erosion, both of which can kill vegetation, happening more rapidly than vegetation growth. I conduct two sets of experiments; in the first, I explore the interactions between vegetation and sea level rise rate, and in the second, between vegetation and rate of sediment and water discharge. As expected, I find that sea level rise decreases vegetation’s ability to stabilize channels but that vegetation can still exert a strong influence on the delta at low rates of sea level rise. This limit appears to be higher for channel dynamics than delta morphology, supporting the findings of Chapter 4. In addition, I propose two new insights into delta evolution under different discharge conditions with and without vegetation. First, without vegetation, I observe a shift in avulsion dynamics with increasing water discharge: from a few active channels supplemented by overbank flow and undergoing episodic avulsion (with low discharge) to many active channels experiencing frequent local and partial avulsions (with high discharge). Second, with vegetation, increased sediment discharge and associated aggradation results in more frequent switching of the dominant channels, but also prevents vegetation from establishing in non-dominant channels, resulting in more frequent channel reoccupation and therefore in channel network planform stability. These insights have important implications for understanding the distribution of water, sediment, and nutrients on deltas in the face of future changes in climate, human modifications of fluxes of sediment and water to the coast, and especially for restored or engineered deltas with controlled water or sediment discharges.