Browsing by Subject "Venous Thromboembolism"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access D-Dimer elevation and adverse outcomes.(J Thromb Thrombolysis, 2015-01) Halaby, Rim; Popma, Christopher J; Cohen, Ander; Chi, Gerald; Zacarkim, Marcelo Rodrigues; Romero, Gonzalo; Goldhaber, Samuel Z; Hull, Russell; Hernandez, Adrian; Mentz, Robert; Harrington, Robert; Lip, Gregory; Peacock, Frank; Welker, James; Martin-Loeches, Ignacio; Daaboul, Yazan; Korjian, Serge; Gibson, C MichaelD-Dimer is a biomarker of fibrin formation and degradation. While a D-dimer within normal limits is used to rule out the diagnosis of deep venous thrombosis and pulmonary embolism among patients with a low clinical probability of venous thromboembolism (VTE), the prognostic association of an elevated D-dimer with adverse outcomes has received far less emphasis. An elevated D-dimer is independently associated with an increased risk for incident VTE, recurrent VTE, and mortality. An elevated D-dimer is an independent correlate of increased mortality and subsequent VTE across a broad variety of disease states. Therefore, medically ill subjects in whom the D-dimer is elevated constitute a high risk subgroup in which the prospective evaluation of the efficacy and safety of antithrombotic therapy is warranted.Item Open Access Guidance for the treatment and prevention of obstetric-associated venous thromboembolism.(J Thromb Thrombolysis, 2016-01) Bates, Shannon M; Middeldorp, Saskia; Rodger, Marc; James, Andra H; Greer, IanVenous thromboembolism (VTE), which may manifest as pulmonary embolism (PE) or deep vein thrombosis (DVT), is a serious and potentially fatal condition. Treatment and prevention of obstetric-related VTE is complicated by the need to consider fetal, as well as maternal, wellbeing when making management decisions. Although absolute VTE rates in this population are low, obstetric-associated VTE is an important cause of maternal morbidity and mortality. This manuscript, initiated by the Anticoagulation Forum, provides practical clinical guidance on the prevention and treatment of obstetric-associated VTE based on existing guidelines and consensus expert opinion based on available literature where guidelines are lacking.Item Open Access Venous thromboembolism (VTE) prevention and diagnosis in COVID-19: Practice patterns and outcomes at 33 hospitals.(PloS one, 2022-01) Parks, Anna L; Auerbach, Andrew D; Schnipper, Jeffrey L; Bertram, Amanda; Jeon, Sun Y; Boyle, Bridget; Fang, Margaret C; Gadrey, Shrirang M; Siddiqui, Zishan K; Brotman, Daniel J; Hospital Medicine Reengineering Network (HOMERuN)Background
Early reports of increased thrombosis risk with SARS-CoV-2 infection led to changes in venous thromboembolism (VTE) management. Real-world data on the prevalence, efficacy and harms of these changes informs best practices.Objective
Define practice patterns and clinical outcomes related to VTE diagnosis, prevention, and management in hospitalized patients with coronavirus disease-19 (COVID-19) using a multi-hospital US sample.Methods
In this retrospective cross-sectional study of 1121 patients admitted to 33 hospitals, exposure was dose of anticoagulant prescribed for VTE prophylaxis (standard, intensified, therapeutic), and primary outcome was VTE (pulmonary embolism [PE] and deep vein thrombosis [DVT]); secondary outcomes were PE, DVT, arterial thromboembolism (ATE), and bleeding events. Multivariable logistic regression models accounting for clustering by site and adjusted for risk factors were used to estimate odds ratios (ORs). Inverse probability weighting was used to account for confounding by indication.Results
1121 patients (mean age 60 ± 18, 47% female) admitted with COVID-19 between February 2, 2020 and December 31, 2020 to 33 US hospitals were included. Pharmacologic VTE prophylaxis was prescribed in 86%. Forty-seven patients (4.2%) had PE, 51 (4.6%) had DVT, and 23 (2.1%) had ATE. Forty-six patients (4.1%) had major bleeding and 46 (4.1%) had clinically relevant non-major bleeding. Compared to standard prophylaxis, adjusted odds of VTE were 0.67 (95% CI 0.21-2.1) with no prophylaxis, 1.0 (95% CI 0.06-17) with intensified, and 3.0 (95% CI 0.89-10) with therapeutic. Adjusted odds of bleeding with no prophylaxis were 5.6 (95% CI 3.0-11) and 5.3 (95% CI 3.0-10) with therapeutic (no events on intensified dosing).Conclusions
Therapeutic anticoagulation was associated with a 3-fold increased odds of VTE and 5-fold increased odds of bleeding. While higher bleeding rates with high-intensity prophylaxis were likely due to full-dose anticoagulation, we conclude that high thrombosis rates were due to clinical concern for thrombosis before formal diagnosis.