Browsing by Subject "Ventricular Function, Left"
Now showing 1 - 14 of 14
- Results Per Page
- Sort Options
Item Open Access Augmentation of cardiac contractility mediated by the human beta(3)-adrenergic receptor overexpressed in the hearts of transgenic mice.(Circulation, 2001-11-13) Kohout, TA; Takaoka, H; McDonald, PH; Perry, SJ; Mao, L; Lefkowitz, RJ; Rockman, HABACKGROUND: Stimulation of beta(1)- and beta(2)-adrenergic receptors (ARs) in the heart results in positive inotropy. In contrast, it has been reported that the beta(3)AR is also expressed in the human heart and that its stimulation leads to negative inotropic effects. METHODS AND RESULTS: To better understand the role of beta(3)ARs in cardiac function, we generated transgenic mice with cardiac-specific overexpression of 330 fmol/mg protein of the human beta(3)AR (TGbeta(3) mice). Hemodynamic characterization was performed by cardiac catheterization in closed-chest anesthetized mice, by pressure-volume-loop analysis, and by echocardiography in conscious mice. After propranolol blockade of endogenous beta(1)- and beta(2)ARs, isoproterenol resulted in an increase in contractility in the TGbeta(3) mice (30%), with no effect in wild-type mice. Similarly, stimulation with the selective human beta(3)AR agonist L-755,507 significantly increased contractility in the TGbeta(3) mice (160%), with no effect in wild-type mice, as determined by hemodynamic measurements and by end-systolic pressure-volume relations. The underlying mechanism of the positive inotropy incurred with L-755,507 in the TGbeta(3) mice was investigated in terms of beta(3)AR-G-protein coupling and adenylyl cyclase activation. Stimulation of cardiac membranes from TGbeta(3) mice with L-755,507 resulted in a pertussis toxin-insensitive 1.33-fold increase in [(35)S]GTPgammaS loading and a 1.6-fold increase in adenylyl cyclase activity. CONCLUSIONS: Cardiac overexpression of human beta(3)ARs results in positive inotropy only on stimulation with a beta(3)AR agonist. Overexpressed beta(3)ARs couple to G(s) and activate adenylyl cyclase on agonist stimulation.Item Open Access Comparison of long-term postoperative sequelae in patients with tetralogy of Fallot versus isolated pulmonic stenosis.(Am J Cardiol, 2014-07-15) Zdradzinski, Michael J; Qureshi, Athar M; Stewart, Robert; Pettersson, Gosta; Krasuski, Richard APatients with tetralogy of Fallot (TOF) after complete repair and pulmonic stenosis (PS) after surgical valvotomy often develop significant pulmonic regurgitation (PR) that eventually requires valve replacement. Although criteria exist for the timing of pulmonary valve replacement in TOF, it remains less clear when to intervene in valvotomy patients and whether TOF recommendations can be applied. Our aim was to compare the structural and functional sequelae of valvotomy for PS with complete repair for TOF. We compared the clinical characteristics, electrocardiograms, echocardiograms, cardiac magnetic resonance imaging (MRI), and invasive hemodynamics of 109 adults (34 PS and 75 TOF) newly referred to a congenital heart disease center for evaluation of PR between 2005 and 2012. Both cohorts were similar in terms of baseline demographics and presenting New York Heart Association function class. Valvotomy patients had a slightly greater degree of PR by echocardiogram, although it was similar by cardiac MRI. Electrocardiography QRS width was greater in patients with TOF (114±27 vs 150±28 ms, p<0.001). MRI right ventricular ejection fraction (49±8 vs 41±11%, p=0.001) and left ventricular ejection fraction (59±7 vs 52±10%, p=0.002) were lower in patients with TOF. Pacemaker or defibrillator implantation was significantly greater in patients with TOF (3% vs 23%, p=0.011). In conclusion, patients postvalvotomy and complete repair present with similar degrees of PR and severity of symptoms. Biventricular systolic function and electrocardiography QRS width appear less affected, suggesting morphologic changes in TOF and its repair that extend beyond the effects of PR. These findings suggest the need for developing disease-specific guidelines for patients with PR postvalvotomy.Item Open Access Gi-biased β2AR signaling links GRK2 upregulation to heart failure.(Circulation research, 2012-01) Zhu, Weizhong; Petrashevskaya, Natalia; Ren, Shuxun; Zhao, Aizhi; Chakir, Khalid; Gao, Erhe; Chuprun, J Kurt; Wang, Yibin; Talan, Mark; Dorn, Gerald W; Lakatta, Edward G; Koch, Walter J; Feldman, Arthur M; Xiao, Rui-PingRationale
Phosphorylation of β(2)-adrenergic receptor (β(2)AR) by a family of serine/threonine kinases known as G protein-coupled receptor kinase (GRK) and protein kinase A (PKA) is a critical determinant of cardiac function. Upregulation of G protein-coupled receptor kinase 2 (GRK2) is a well-established causal factor of heart failure, but the underlying mechanism is poorly understood.Objective
We sought to determine the relative contribution of PKA- and GRK-mediated phosphorylation of β(2)AR to the receptor coupling to G(i) signaling that attenuates cardiac reserve and contributes to the pathogenesis of heart failure in response to pressure overload.Methods and results
Overexpression of GRK2 led to a G(i)-dependent decrease of contractile response to βAR stimulation in cultured mouse cardiomyocytes and in vivo. Importantly, cardiac-specific transgenic overexpression of a mutant β(2)AR lacking PKA phosphorylation sites (PKA-TG) but not the wild-type β(2)AR (WT-TG) or a mutant β(2)AR lacking GRK sites (GRK-TG) led to exaggerated cardiac response to pressure overload, as manifested by markedly exacerbated cardiac maladaptive remodeling and failure and early mortality. Furthermore, inhibition of G(i) signaling with pertussis toxin restores cardiac function in heart failure associated with increased β(2)AR to G(i) coupling induced by removing PKA phosphorylation of the receptor and in GRK2 transgenic mice, indicating that enhanced phosphorylation of β(2)AR by GRK and resultant increase in G(i)-biased β(2)AR signaling play an important role in the development of heart failure.Conclusions
Our data show that enhanced β(2)AR phosphorylation by GRK, in addition to PKA, leads the receptor to G(i)-biased signaling, which, in turn, contributes to the pathogenesis of heart failure, marking G(i)-biased β(2)AR signaling as a primary event linking upregulation of GRK to cardiac maladaptive remodeling, failure and cardiodepression.Item Open Access Heart failure with preserved ejection fraction: New approaches to diagnosis and management.(Clinical cardiology, 2020-02) Upadhya, Bharathi; Kitzman, Dalane WThe majority of older patients who develop heart failure (HF), particularly older women, have a preserved left ventricular ejection fraction (HFpEF). Patients with HFpEF have severe symptoms of exercise intolerance, poor quality-of-life, frequent hospitalizations, and increased mortality. The prevalence of HFpEF is increasing and its prognosis is worsening. However, despite its importance, our understanding of the pathophysiology of HFpEF is incomplete, and drug development has proved immensely challenging. Currently, there are no universally accepted therapies that alter the clinical course of HFpEF. Originally viewed as a disorder due solely to abnormalities in left ventricular (LV) diastolic function, our understanding has evolved such that HFpEF is now understood as a systemic syndrome, involving multiple organ systems, likely triggered by inflammation and with an important contribution of aging, lifestyle factors, genetic predisposition, and multiple-comorbidities, features that are typical of a geriatric syndrome. HFpEF is usually progressive due to complex mechanisms of systemic and cardiac adaptation that vary over time, particularly with aging. In this review, we examine evolving data regarding HFpEF that may help explain past challenges and provide future directions to care patients with this highly prevalent, heterogeneous clinical syndrome.Item Open Access In vivo inhibition of elevated myocardial beta-adrenergic receptor kinase activity in hybrid transgenic mice restores normal beta-adrenergic signaling and function.(Circulation, 1999-08-10) Akhter, SA; Eckhart, AD; Rockman, HA; Shotwell, K; Lefkowitz, RJ; Koch, WJBACKGROUND: The clinical syndrome of heart failure (HF) is characterized by an impaired cardiac beta-adrenergic receptor (betaAR) system, which is critical in the regulation of myocardial function. Expression of the betaAR kinase (betaARK1), which phosphorylates and uncouples betaARs, is elevated in human HF; this likely contributes to the abnormal betaAR responsiveness that occurs with beta-agonist administration. We previously showed that transgenic mice with increased myocardial betaARK1 expression had impaired cardiac function in vivo and that inhibiting endogenous betaARK1 activity in the heart led to enhanced myocardial function. METHODS AND RESULTS: We created hybrid transgenic mice with cardiac-specific concomitant overexpression of both betaARK1 and an inhibitor of betaARK1 activity to study the feasibility and functional consequences of the inhibition of elevated betaARK1 activity similar to that present in human HF. Transgenic mice with myocardial overexpression of betaARK1 (3 to 5-fold) have a blunted in vivo contractile response to isoproterenol when compared with non-transgenic control mice. In the hybrid transgenic mice, although myocardial betaARK1 levels remained elevated due to transgene expression, in vitro betaARK1 activity returned to control levels and the percentage of betaARs in the high-affinity state increased to normal wild-type levels. Furthermore, the in vivo left ventricular contractile response to betaAR stimulation was restored to normal in the hybrid double-transgenic mice. CONCLUSIONS: Novel hybrid transgenic mice can be created with concomitant cardiac-specific overexpression of 2 independent transgenes with opposing actions. Elevated myocardial betaARK1 in transgenic mouse hearts (to levels seen in human HF) can be inhibited in vivo by a peptide that can prevent agonist-stimulated desensitization of cardiac betaARs. This may represent a novel strategy to improve myocardial function in the setting of compromised heart function.Item Open Access Intracoronary adenovirus-mediated delivery and overexpression of the beta(2)-adrenergic receptor in the heart : prospects for molecular ventricular assistance.(Circulation, 2000-02-01) Glower, Donald D Jr; Hata, Jonathan Andrew; Koch, Walter J; Kypson, Alan P; Lefkowitz, Robert J; Lilly, R Eric; Pippen, Anne; Shah, AS; Silvestry, Scott Christopher; Tai, OliverBACKGROUND: Genetic modulation of ventricular function may offer a novel therapeutic strategy for patients with congestive heart failure. Myocardial overexpression of beta(2)-adrenergic receptors (beta(2)ARs) has been shown to enhance contractility in transgenic mice and reverse signaling abnormalities found in failing cardiomyocytes in culture. In this study, we sought to determine the feasibility and in vivo consequences of delivering an adenovirus containing the human beta(2)AR cDNA to ventricular myocardium via catheter-mediated subselective intracoronary delivery. METHODS AND RESULTS: Rabbits underwent percutaneous subselective catheterization of either the left or right coronary artery and infusion of adenoviral vectors containing either a marker transgene (Adeno-betaGal) or the beta(2)AR (Adeno-beta(2)AR). Ventricular function was assessed before catheterization and 3 to 6 days after gene delivery. Both left circumflex- and right coronary artery-mediated delivery of Adeno-beta(2)AR resulted in approximately 10-fold overexpression in a chamber-specific manner. Delivery of Adeno-betaGal did not alter in vivo left ventricular (LV) systolic function, whereas overexpression of beta(2)ARs in the LV improved global LV contractility, as measured by dP/dt(max), at baseline and in response to isoproterenol at both 3 and 6 days after gene delivery. CONCLUSIONS: Percutaneous adenovirus-mediated intracoronary delivery of a potentially therapeutic transgene is feasible, and acute global LV function can be enhanced by LV-specific overexpression of the beta(2)AR. Thus, genetic modulation to enhance the function of the heart may represent a novel therapeutic strategy for congestive heart failure and can be viewed as molecular ventricular assistance.Item Open Access Ligand-induced overexpression of a constitutively active beta2-adrenergic receptor: pharmacological creation of a phenotype in transgenic mice.(Proc Natl Acad Sci U S A, 1997-01-07) Samama, P; Bond, RA; Rockman, HA; Milano, CA; Lefkowitz, RJTransgenic overexpression (40- to 100-fold) of the wild-type human beta2-adrenergic receptor in the hearts of mice leads to a marked increase in cardiac contractility, which is apparently due to the low level of spontaneous (i.e., agonist-independent) activity inherent in the receptor. Here we report that transgenic mice expressing a mutated constitutively active form of the receptor (CAM) show no such phenotype, owing to its modest expression (3-fold above endogenous cardiac beta-adrenergic receptor levels). Surprisingly, treatment of the animals with a variety of beta-adrenergic receptor ligands leads to a 50-fold increase in CAM beta2-adrenergic receptor expression, by stabilizing the CAM beta2-adrenergic receptor protein. Receptor up-regulation leads in turn to marked increases in adenylate cyclase activity, atrial tension determined in vitro, and indices of cardiac contractility determined in vivo. These results illustrate a novel mechanism for regulating physiological responses, i.e., ligand-induced stabilization of a constitutively active but inherently unstable protein.Item Open Access Long-Term Caloric Restriction Improves Cardiac Function, Remodeling, Adrenergic Responsiveness, and Sympathetic Innervation in a Model of Postischemic Heart Failure.(Circulation. Heart failure, 2018-03) de Lucia, Claudio; Gambino, Giuseppina; Petraglia, Laura; Elia, Andrea; Komici, Klara; Femminella, Grazia Daniela; D'Amico, Maria Loreta; Formisano, Roberto; Borghetti, Giulia; Liccardo, Daniela; Nolano, Maria; Houser, Steven R; Leosco, Dario; Ferrara, Nicola; Koch, Walter J; Rengo, GiuseppeBackground
Caloric restriction (CR) has been described to have cardioprotective effects and improve functional outcomes in animal models and humans. Chronic ischemic heart failure (HF) is associated with reduced cardiac sympathetic innervation, dysfunctional β-adrenergic receptor signaling, and decreased cardiac inotropic reserve. We tested the effects of a long-term CR diet, started late after myocardial infarction on cardiac function, sympathetic innervation, and β-adrenergic receptor responsiveness in a rat model of postischemic HF.Methods and results
Adult male rats were randomly assigned to myocardial infarction or sham operation and 4 weeks later were further randomized to a 1-year CR or normal diet. One year of CR resulted in a significant reduction in body weight, heart weight, and heart weight/tibia length ratio when compared with normal diet in HF groups. At the end of the study period, echocardiography and histology revealed that HF animals under the CR diet had ameliorated left ventricular remodeling compared with HF rats fed with normal diet. Invasive hemodynamic showed a significant improvement of cardiac inotropic reserve in CR HF rats compared with HF-normal diet animals. Importantly, CR dietary regimen was associated with a significant increase of cardiac sympathetic innervation and with normalized cardiac β-adrenergic receptor levels in HF rats when compared with HF rats on the standard diet.Conclusions
We demonstrate, for the first time, that chronic CR, when started after HF established, can ameliorate cardiac dysfunction and improve inotropic reserve. At the molecular level, we find that chronic CR diet significantly improves sympathetic cardiac innervation and β-adrenergic receptor levels in failing myocardium.Item Open Access Myocardial Function in Premenopausal Women Treated With Ovarian Function Suppression and an Aromatase Inhibitor.(JNCI cancer spectrum, 2021-08) Jordan, Jennifer H; D'Agostino, Ralph B; Ansley, Katherine; Douglas, Emily; Melin, Susan; Sorscher, Steven; Vasu, Sujethra; Park, Sung; Kotak, Anuj; Romitti, Paul A; O'Connell, Nathanial S; Hundley, William G; Thomas, AlexandraPremenopausal women with high-risk hormone receptor (HR)-positive breast cancer often receive ovarian function suppression (OFS) with aromatase inhibitor therapy; however, abrupt menopause induction, together with further decrements in estrogen exposure through aromatase inhibition, may affect cardiovascular microcirculatory function. We examined adenosine-induced changes in left ventricular (LV) myocardial T1, a potential subclinical marker of LV microcirculatory function in premenopausal women undergoing treatment for breast cancer. Twenty-one premenopausal women (14 with HR-positive breast cancer receiving OFS with an aromatase inhibitor and 7 comparator women with triple-negative breast cancer [TNBC] who had completed primary systemic therapy) underwent serial resting and adenosine cardiovascular magnetic resonance imaging measurements of LV myocardial T1 and LV volumes, mass, and ejection fraction. All statistical tests were 2-sided. After a median of 4.0 months (range = 3.1-5.7 months), the stress to resting ratio of LV myocardial T1 declined in women with HR-positive breast cancer (-1.3%, 95% confidence interval [CI] = -3.4% to 0.7%) relative to those with TNBC (3.2%, 95% CI = -1.2% to 7.6%, P = .02). After accounting for age, LV stroke volume, LV ejection fraction, diastolic blood pressure, and breast cancer subtype women with HR-positive breast cancer experienced a blunted T1 response after adenosine relative to women with TNBC (difference = -4.7%, 95% CI = -7.3% to -2.1%, Pdifference = .002). Over the brief interval examined, women with HR-positive breast cancer receiving OFS with an aromatase inhibitor experienced reductions in adenosine-associated changes in LV myocardial T1 relative to women who received nonhormonal therapy for TNBC. These findings suggest a possible adverse impact on LV myocardial microcirculatory function in premenopausal women with breast cancer receiving hormone deprivation therapy.Item Open Access Myocardial Strain and Cardiac Output are Preferable Measurements for Cardiac Dysfunction and Can Predict Mortality in Septic Mice.(Journal of the American Heart Association, 2019-05) Hoffman, Matthew; Kyriazis, Ioannis D; Lucchese, Anna M; de Lucia, Claudio; Piedepalumbo, Michela; Bauer, Michael; Schulze, P Christian; Bonios, Michael J; Koch, Walter J; Drosatos, KonstantinosBackground Sepsis is the overwhelming host response to infection leading to shock and multiple organ dysfunction. Cardiovascular complications greatly increase sepsis-associated mortality. Although murine models are routinely used for preclinical studies, the benefit of using genetically engineered mice in sepsis is countered by discrepancies between human and mouse sepsis pathophysiology. Therefore, recent guidelines have called for standardization of preclinical methods to document organ dysfunction. We investigated the course of cardiac dysfunction and myocardial load in different mouse models of sepsis to identify the optimal measurements for early systolic and diastolic dysfunction. Methods and Results We performed speckle-tracking echocardiography and assessed blood pressure, plasma inflammatory cytokines, lactate, B-type natriuretic peptide, and survival in mouse models of endotoxemia or polymicrobial infection (cecal ligation and puncture, [ CLP ]) of moderate and high severity. We observed that myocardial strain and cardiac output were consistently impaired early in both sepsis models. Suppression of cardiac output was associated with systolic dysfunction in endotoxemia or combined systolic dysfunction and reduced preload in the CLP model. We found that cardiac output at 2 hours post- CLP is a negative prognostic indicator with high sensitivity and specificity that predicts mortality at 48 hours. Using a known antibiotic (ertapenem) treatment, we confirmed that this approach can document recovery. Conclusions We propose a non-invasive approach for assessment of cardiac function in sepsis and myocardial strain and strain rate as preferable measures for monitoring cardiovascular function in sepsis mouse models. We further show that the magnitude of cardiac output suppression 2 hours post- CLP can be used to predict mortality.Item Open Access PINOT NOIR: pulmonic insufficiency improvement with nitric oxide inhalational response.(J Cardiovasc Magn Reson, 2013-09-04) Hart, Stephen A; Devendra, Ganesh P; Kim, Yuli Y; Flamm, Scott D; Kalahasti, Vidyasagar; Arruda, Janine; Walker, Esteban; Boonyasirinant, Thananya; Bolen, Michael; Setser, Randolph; Krasuski, Richard ABACKGROUND: Tetralogy of Fallot (TOF) repair and pulmonary valvotomy for pulmonary stenosis (PS) lead to progressive pulmonary insufficiency (PI), right ventricular enlargement and dysfunction. This study assessed whether pulmonary regurgitant fraction measured by cardiovascular magnetic resonance (CMR) could be reduced with inhaled nitric oxide (iNO). METHODS: Patients with at least moderate PI by echocardiography undergoing clinically indicated CMR were prospectively enrolled. Patients with residual hemodynamic lesions were excluded. Ventricular volume and blood flow sequences were obtained at baseline and during administration of 40 ppm iNO. RESULTS: Sixteen patients (11 with repaired TOF and 5 with repaired PS) completed the protocol with adequate data for analysis. The median age [range] was 35 [19-46] years, BMI was 26 ± 5 kg/m(2) (mean ± SD), 50% were women and 75% were in NYHA class I. Right ventricular end diastolic volume index for the cohort was 157 ± 33 mL/m(2), end systolic volume index was 93 ± 20 mL/m(2) and right ventricular ejection fraction was 40 ± 6%. Baseline pulmonary regurgitant volume was 45 ± 25 mL/beat and regurgitant fraction was 35 ± 16%. During administration of iNO, regurgitant volume was reduced by an average of 6 ± 9% (p=0.01) and regurgitant fraction was reduced by an average of 5 ± 8% (p=0.02). No significant changes were observed in ventricular indices for either the left or right ventricle. CONCLUSION: iNO was successfully administered during CMR acquisition and appears to reduce regurgitant fraction in patients with at least moderate PI suggesting a potential role for selective pulmonary vasodilator therapy in these patients. TRIALS REGISTRATION: ClinicalTrials.gov, NCT00543933.Item Open Access Podoplanin neutralization improves cardiac remodeling and function after acute myocardial infarction.(JCI insight, 2019-07) Cimini, Maria; Garikipati, Venkata Naga Srikanth; de Lucia, Claudio; Cheng, Zhongjian; Wang, Chunlin; Truongcao, May M; Lucchese, Anna Maria; Roy, Rajika; Benedict, Cindy; Goukassian, David A; Koch, Walter J; Kishore, RajPodoplanin, a small mucine-type transmembrane glycoprotein, has been recently shown to be expressed by lymphangiogenic, fibrogenic and mesenchymal progenitor cells in the acutely and chronically infarcted myocardium. Podoplanin binds to CLEC-2, a C-type lectin-like receptor 2 highly expressed by CD11bhigh cells following inflammatory stimuli. Why podoplanin expression appears only after organ injury is currently unknown. Here, we characterize the role of podoplanin in different stages of myocardial repair after infarction and propose a podoplanin-mediated mechanism in the resolution of post-MI inflammatory response and cardiac repair. Neutralization of podoplanin led to significant improvements in the left ventricular functions and scar composition in animals treated with podoplanin neutralizing antibody. The inhibition of the interaction between podoplanin and CLEC-2 expressing immune cells in the heart enhances the cardiac performance, regeneration and angiogenesis post MI. Our data indicates that modulating the interaction between podoplanin positive cells with the immune cells after myocardial infarction positively affects immune cell recruitment and may represent a novel therapeutic target to augment post-MI cardiac repair, regeneration and function.Item Open Access Preservation of myocardial beta-adrenergic receptor signaling delays the development of heart failure after myocardial infarction.(Proc Natl Acad Sci U S A, 2000-05-09) White, DC; Hata, JA; Shah, AS; Glower, DD; Lefkowitz, RJ; Koch, WJWhen the heart fails, there is often a constellation of biochemical alterations of the beta-adrenergic receptor (betaAR) signaling system, leading to the loss of cardiac inotropic reserve. betaAR down-regulation and functional uncoupling are mediated through enhanced activity of the betaAR kinase (betaARK1), the expression of which is increased in ischemic and failing myocardium. These changes are widely viewed as representing an adaptive mechanism, which protects the heart against chronic activation. In this study, we demonstrate, using in vivo intracoronary adenoviral-mediated gene delivery of a peptide inhibitor of betaARK1 (betaARKct), that the desensitization and down-regulation of betaARs seen in the failing heart may actually be maladaptive. In a rabbit model of heart failure induced by myocardial infarction, which recapitulates the biochemical betaAR abnormalities seen in human heart failure, delivery of the betaARKct transgene at the time of myocardial infarction prevents the rise in betaARK1 activity and expression and thereby maintains betaAR density and signaling at normal levels. Rather than leading to deleterious effects, cardiac function is improved, and the development of heart failure is delayed. These results appear to challenge the notion that dampening of betaAR signaling in the failing heart is protective, and they may lead to novel therapeutic strategies to treat heart disease via inhibition of betaARK1 and preservation of myocardial betaAR function.Item Open Access The association of accelerated epigenetic age with all-cause mortality in cardiac catheterization patients as mediated by vascular and cardiometabolic outcomes.(Clinical epigenetics, 2022-12) Jiang, Rong; Hauser, Elizabeth R; Kwee, Lydia Coulter; Shah, Svati H; Regan, Jessica A; Huebner, Janet L; Kraus, Virginia B; Kraus, William E; Ward-Caviness, Cavin KBackground
Epigenetic age is a DNA methylation-based biomarker of aging that is accurate across the lifespan and a range of cell types. The difference between epigenetic age and chronological age, termed age acceleration (AA), is a strong predictor of lifespan and healthspan. The predictive capabilities of AA for all-cause mortality have been evaluated in the general population; however, its utility is less well evaluated in those with chronic conditions. Additionally, the pathophysiologic pathways whereby AA predicts mortality are unclear. We hypothesized that AA predicts mortality in individuals with underlying cardiovascular disease; and the association between AA and mortality is mediated, in part, by vascular and cardiometabolic measures.Methods
We evaluated 562 participants in an urban, three-county area of central North Carolina from the CATHGEN cohort, all of whom received a cardiac catheterization procedure. We analyzed three AA biomarkers, Horvath epigenetic age acceleration (HAA), phenotypic age acceleration (PhenoAA), and Grim age acceleration (GrimAA), by Cox regression models, to assess whether AAs were associated with all-cause mortality. We also evaluated if these associations were mediated by vascular and cardiometabolic outcomes, including left ventricular ejection fraction (LVEF), blood cholesterol concentrations, angiopoietin-2 (ANG2) protein concentration, peripheral artery disease, coronary artery disease, diabetes, and hypertension. The total effect, direct effect, indirect effect, and percentage mediated were estimated using pathway mediation tests with a regression adjustment approach.Results
PhenoAA (HR = 1.05, P < 0.0001), GrimAA (HR = 1.10, P < 0.0001) and HAA (HR = 1.03, P = 0.01) were all associated with all-cause mortality. The association of mortality and PhenoAA was partially mediated by ANG2, a marker of vascular function (19.8%, P = 0.016), and by diabetes (8.2%, P = 0.043). The GrimAA-mortality association was mediated by ANG2 (12.3%, P = 0.014), and showed weaker evidence for mediation by LVEF (5.3%, P = 0.065).Conclusions
Epigenetic age acceleration remains strongly predictive of mortality even in individuals already burdened with cardiovascular disease. Mortality associations were mediated by ANG2, which regulates endothelial permeability and angiogenic functions, suggesting that specific vascular pathophysiology may link accelerated epigenetic aging with increased mortality risks.