Browsing by Subject "Weight-Bearing"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Open Access Are Weightbearing Restrictions Required After Microfracture for Isolated Chondral Lesions of the Knee? A Review of the Basic Science and Clinical Literature.(Sports health, 2021-03) Jain, Deeptee; Belay, Elshaday S; Anderson, John A; Garrett, William E; Lau, Brian CContext
A strict rehabilitation protocol is traditionally followed after microfracture, including weightbearing restrictions for 2 to 6 weeks. However, such restrictions pose significant disability, especially in a patient population that is younger and more active.Evidence acquisition
An extensive literature review was performed through PubMed and Google Scholar of all studies through December 2018 related to microfracture, including biomechanical, basic science, and clinical studies. For inclusion, clinical studies had to report weightbearing status and outcomes with a minimum 12-month follow-up.Study design
Clinical review.Level of evidence
Level 3.Results
Review of biomechanical and biology studies suggest new forming repair tissue is protected from shear forces of knee joint loading by the cartilaginous margins of the defect. This margin acts as a shoulder to maintain axial height and allow for tissue remodeling up to at least 12 months after surgery, well beyond current weight bearing restriction trends. A retrospective case-control study showed that weightbearing status postoperatively had no effect on clinical outcomes in patients who underwent microfracture for small chondral (<2 mm2) defects. In fact, 1 survey showed that many orthopaedic surgeons currently do not restrict weightbearing after microfracture.Conclusion
This clinical literature review suggests that weightbearing restrictions may not be required after microfracture for isolated tibiofemoral chondral lesions of the knee.Strength of recommendation taxonomy
C.Item Open Access Coverage maps demonstrate 3D Chopart joint subluxation in weightbearing CT of progressive collapsing foot deformity.(Scientific reports, 2022-11) Behrens, Andrew; Dibbern, Kevin; Dibbern, Kevin; Lalevée, Matthieu; Alencar Mendes de Carvalho, Kepler; Lintz, Francois; Barbachan Mansur, Nacime Salomao; de Cesar Netto, CesarA key element of the peritalar subluxation (PTS) seen in progressive collapsing foot deformity (PCFD) occurs through the transverse tarsal joint complex. However, the normal and pathological relations of these joints are not well understood. The objective of this study to compare Chopart articular coverages between PCFD patients and controls using weight-bearing computed tomography (WBCT). In this retrospective case control study, 20 patients with PCFD and 20 matched controls were evaluated. Distance and coverage mapping techniques were used to evaluate the talonavicular and calcaneocuboid interfaces. Principal axes were used to divide the talar head into 6 regions (medial/central/lateral and plantar/dorsal) and the calcaneocuboid interface into 4 regions. Repeated selections were performed to evaluate reliability of joint interface identification. Surface selections had high reliability with an ICC > 0.99. Talar head coverage decreases in plantarmedial and dorsalmedial (- 79%, p = 0.003 and - 77%, p = 0.00004) regions were seen with corresponding increases in plantarlateral and dorsolateral regions (30%, p = 0.0003 and 21%, p = 0.002) in PCFD. Calcaneocuboid coverage decreased in plantar and medial regions (- 12%, p = 0.006 and - 9%, p = 0.037) and increased in the lateral region (13%, p = 0.002). Significant subluxation occurs across the medial regions of the talar head and the plantar medial regions of the calcaneocuboid joint. Coverage and distance mapping provide a baseline for understanding Chopart joint changes in PCFD under full weightbearing conditions.Item Open Access Kinematic and dynamic gait compensations in a rat model of lumbar radiculopathy and the effects of tumor necrosis factor-alpha antagonism.(Arthritis research & therapy, 2011-08-26) Allen, Kyle D; Shamji, Mohammed F; Mata, Brian A; Gabr, Mostafa A; Sinclair, S Michael; Schmitt, Daniel O; Richardson, William J; Setton, Lori ATumor necrosis factor-α (TNFα) has received significant attention as a mediator of lumbar radiculopathy, with interest in TNF antagonism to treat radiculopathy. Prior studies have demonstrated that TNF antagonists can attenuate heightened nociception resulting from lumbar radiculopathy in the preclinical model. Less is known about the potential impact of TNF antagonism on gait compensations, despite being of clinical relevance. In this study, we expand on previous descriptions of gait compensations resulting from lumbar radiculopathy in the rat and describe the ability of local TNF antagonism to prevent the development of gait compensations, altered weight bearing, and heightened nociception.Eighteen male Sprague-Dawley rats were investigated for mechanical sensitivity, weight-bearing, and gait pre- and post-operatively. For surgery, tail nucleus pulposus (NP) tissue was collected and the right L5 dorsal root ganglion (DRG) was exposed (Day 0). In sham animals, NP tissue was discarded (n = 6); for experimental animals, autologous NP was placed on the DRG with or without 20 μg of soluble TNF receptor type II (sTNFRII, n = 6 per group). Spatiotemporal gait characteristics (open arena) and mechanical sensitivity (von Frey filaments) were assessed on post-operative Day 5; gait dynamics (force plate arena) and weight-bearing (incapacitance meter) were assessed on post-operative Day 6.High-speed gait characterization revealed animals with NP alone had a 5% decrease in stance time on their affected limbs on Day 5 (P ≤0.032). Ground reaction force analysis on Day 6 aligned with temporal changes observed on Day 5, with vertical impulse reduced in the affected limb of animals with NP alone (area under the vertical force-time curve, P <0.02). Concordant with gait, animals with NP alone also had some evidence of affected limb mechanical allodynia on Day 5 (P = 0.08) and reduced weight-bearing on the affected limb on Day 6 (P <0.05). Delivery of sTNFRII at the time of NP placement ameliorated signs of mechanical hypersensitivity, imbalanced weight distribution, and gait compensations (P <0.1).Our data indicate gait characterization has value for describing early limb dysfunctions in pre-clinical models of lumbar radiculopathy. Furthermore, TNF antagonism prevented the development of gait compensations subsequent to lumbar radiculopathy in our model.Item Open Access Relationships amongst osteoarthritis biomarkers, dynamic knee joint load, and exercise: results from a randomized controlled pilot study.(BMC Musculoskelet Disord, 2013-03-27) Hunt, Michael A; Pollock, Courtney L; Kraus, Virginia Byers; Saxne, Tore; Peters, Sue; Peters, Sue; Huebner, Janet L; Sayre, Eric C; Cibere, JolandaBACKGROUND: Little is known about the relationships of circulating levels of biomarkers of cartilage degradation with biomechanical outcomes relevant to knee osteoarthritis (OA) or biomarker changes following non-pharmacological interventions. The objectives of this exploratory, pilot study were to: 1) examine relationships between biomarkers of articular cartilage degradation and synthesis with measures of knee joint load during walking, and 2) examine changes in these biomarkers following 10 weeks of strengthening exercises. METHODS: Seventeen (8 male, 9 female; 66.1 +/- 11.3 years of age) individuals with radiographically-confirmed medial tibiofemoral OA participated. All participants underwent a baseline testing session where serum and urine samples were collected, followed by a three-dimensional motion analysis. Motion analysis was used to calculate the external knee adduction moment (KAM) peak value and impulse. Following baseline testing, participants were randomized to either 10 weeks of: 1) physiotherapist-supervised lower limb muscle strengthening exercises, or 2) no exercises (control). Identical follow-up testing was conducted 11 weeks after baseline. Biomarkers included: urinary C-telopeptide of type II collagen (uCTX-II) and type II collagen cleavage neoepitope (uC2C), serum cartilage oligomeric matrix protein (sCOMP), serum hyaluronic acid (sHA) and serum C-propeptide of type II procollagen (sCPII). Linear regression analysis was used to examine relationships between measures of the KAM and biomarker concentrations as baseline, as well as between-group differences following the intervention. RESULTS: KAM impulse predicted significant variation in uCTX-II levels at baseline (p = 0.04), though not when controlling for disease severity and walking speed (p = 0.33). KAM impulse explained significant variation in the ratio uCTX-II;sCPII even when controlling for additional variables (p = 0.04). Following the intervention, changes in sCOMP were significantly greater in the exercise group compared to controls (p = 0.04). On average those in the control group experienced a slight increase in sCOMP and uCTX-II, while those in the exercise group experienced a reduction. No other significant findings were observed. CONCLUSIONS: This research provides initial evidence of a potential relationship between uCTX-II and knee joint load measures in patients with medial tibiofemoral knee OA. However, this relationship became non-significant after controlling for disease severity and walking speed, suggesting further research is necessary. It also appears that sCOMP is amenable to change following a strengthening intervention, suggesting a potential beneficial role of exercise on cartilage structure. TRIAL REGISTRATION: Clinicaltrials.gov NCT01241812.Item Open Access Step type is associated with loading and ankle motion in tap dance.(PloS one, 2024-01) Polascik, Breanna A; Jiang, Yue; Schmitt, DanielTap dance generates forces and joint motions that can lead to injury; however, little is known about the magnitude of load across different tap steps. The purpose of this study was to calculate peak vertical forces, average vertical foot velocities, and maximum/minimum ankle angles produced by tap dancers with different levels of experience performing the toe cannon, heel cannon, flap, and cramp roll. This prospective cross-sectional study included 14 female tap dancers aged ≥18 years with varying tap experience. Participants were recorded by three cameras while performing a choreographed tap combination containing four steps of interest on a force platform. Adjusting for experience and dancer-level clustering, we identified the steps-cramp roll and toe cannon-that had the highest peak vertical ground reaction force, angles, and velocities compared to flap and heel cannon. There was no effect of experience. The results supported our hypothesis and provide new insights into step production. Over time, the larger forces associated with these steps could pose an increased risk of injury to bones and joints when compared to smaller forces, which may suggest the importance of adjusting routines to reduce or avoid injury.Item Open Access Using ground reaction force to predict knee kinetic asymmetry following anterior cruciate ligament reconstruction.(Scand J Med Sci Sports, 2014-12) Dai, B; Butler, RJ; Garrett, WE; Queen, RMAsymmetries in sagittal plane knee kinetics have been identified as a risk factor for anterior cruciate ligament (ACL) re-injury. Clinical tools are needed to identify the asymmetries. This study examined the relationships between knee kinetic asymmetries and ground reaction force (GRF) asymmetries during athletic tasks in adolescent patients following ACL reconstruction (ACL-R). Kinematic and GRF data were collected during a stop-jump task and a side-cutting task for 23 patients. Asymmetry indices between the surgical and non-surgical limbs were calculated for GRF and knee kinetic variables. For the stop-jump task, knee kinetics asymmetry indices were correlated with all GRF asymmetry indices (P < 0.05), except for loading rate. Vertical GRF impulse asymmetry index predicted peak knee moment, average knee moment, and knee work (R(2) ≥ 0.78, P < 0.01) asymmetry indices. For the side-cutting tasks, knee kinetic asymmetry indices were correlated with the peak propulsion vertical GRF and vertical GRF impulse asymmetry indices (P < 0.05). Vertical GRF impulse asymmetry index predicted peak knee moment, average knee moment, and knee work (R(2) ≥ 0.55, P < 0.01) asymmetry indices. The vertical GRF asymmetries may be a viable surrogate for knee kinetic asymmetries and therefore may assist in optimizing rehabilitation outcomes and minimizing re-injury rates.