Browsing by Subject "White matter connectivity"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Cerebral white matter connectivity, cognition, and age-related macular degeneration.(NeuroImage. Clinical, 2021-02-23) Zhuang, Jie; Madden, David J; Cunha, Priscila; Badea, Alexandra; Davis, Simon W; Potter, Guy G; Lad, Eleonora M; Cousins, Scott W; Chen, Nan-Kuei; Allen, Kala; Maciejewski, Abigail J; Fernandez, Xuan Duong; Diaz, Michele T; Whitson, Heather EAge-related macular degeneration (AMD) is a common retina disease associated with cognitive impairment in older adults. The mechanism(s) that account for the link between AMD and cognitive decline remain unclear. Here we aim to shed light on this issue by investigating whether relationships between cognition and white matter in the brain differ by AMD status. In a direct group comparison of brain connectometry maps from diffusion weighted images, AMD patients showed significantly weaker quantitative anisotropy (QA) than healthy controls, predominantly in the splenium and left optic radiation. The QA of these tracts, however, did not correlate with the visual acuity measure, indicating that this group effect is not directly driven by visual loss. The AMD and control groups did not differ significantly in cognitive performance.Across all participants, better cognitive performance (e.g. verbal fluency) is associated with stronger connectivity strength in white matter tracts including the splenium and the left inferior fronto-occipital fasciculus/inferior longitudinal fasciculus. However, there were significant interactions between group and cognitive performance (verbal fluency, memory), suggesting that the relation between QA and cognitive performance was weaker in AMD patients than in controls.This may be explained by unmeasured determinants of performance that are more common or impactful in AMD or by a recruitment bias whereby the AMD group had higher cognitive reserve. In general, our findings suggest that neural degeneration in the brain might occur in parallel to AMD in the eyes, although the participants studied here do not (yet) exhibit overt cognitive declines per standard assessments.Item Open Access High-Resolution Multi-Shot Diffusion Imaging of Structural Networks in Healthy Neurocognitive Aging.(NeuroImage, 2023-05) Merenstein, Jenna L; Zhao, Jiayi; Mullin, Hollie A; Rudolph, Marc D; Song, Allen W; Madden, David JHealthy neurocognitive aging has been associated with the microstructural degradation of white matter pathways that connect distributed gray matter regions, assessed by diffusion-weighted imaging (DWI). However, the relatively low spatial resolution of standard DWI has limited the examination of age-related differences in the properties of smaller, tightly curved white matter fibers, as well as the relatively more complex microstructure of gray matter. Here, we capitalize on high-resolution multi-shot DWI, which allows spatial resolutions < 1 mm3 to be achieved on clinical 3T MRI scanners. We assessed whether traditional diffusion tensor-based measures of gray matter microstructure and graph theoretical measures of white matter structural connectivity assessed by standard (1.5 mm3 voxels, 3.375 μl volume) and high-resolution (1 mm3 voxels, 1μl volume) DWI were differentially related to age and cognitive performance in 61 healthy adults 18-78 years of age. Cognitive performance was assessed using an extensive battery comprising 12 separate tests of fluid (speed-dependent) cognition. Results indicated that the high-resolution data had larger correlations between age and gray matter mean diffusivity, but smaller correlations between age and structural connectivity. Moreover, parallel mediation models including both standard and high-resolution measures revealed that only the high-resolution measures mediated age-related differences in fluid cognition. These results lay the groundwork for future studies planning to apply high-resolution DWI methodology to further assess the mechanisms of both healthy aging and cognitive impairment.