Browsing by Subject "Whole-Body Irradiation"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Open Access A translatable predictor of human radiation exposure.(PLoS One, 2014) Lucas, Joseph; Dressman, Holly K; Suchindran, Sunil; Nakamura, Mai; Chao, Nelson J; Himburg, Heather; Minor, Kerry; Phillips, Gary; Ross, Joel; Abedi, Majid; Terbrueggen, Robert; Chute, John PTerrorism using radiological dirty bombs or improvised nuclear devices is recognized as a major threat to both public health and national security. In the event of a radiological or nuclear disaster, rapid and accurate biodosimetry of thousands of potentially affected individuals will be essential for effective medical management to occur. Currently, health care providers lack an accurate, high-throughput biodosimetric assay which is suitable for the triage of large numbers of radiation injury victims. Here, we describe the development of a biodosimetric assay based on the analysis of irradiated mice, ex vivo-irradiated human peripheral blood (PB) and humans treated with total body irradiation (TBI). Interestingly, a gene expression profile developed via analysis of murine PB radiation response alone was inaccurate in predicting human radiation injury. In contrast, generation of a gene expression profile which incorporated data from ex vivo irradiated human PB and human TBI patients yielded an 18-gene radiation classifier which was highly accurate at predicting human radiation status and discriminating medically relevant radiation dose levels in human samples. Although the patient population was relatively small, the accuracy of this classifier in discriminating radiation dose levels in human TBI patients was not substantially confounded by gender, diagnosis or prior exposure to chemotherapy. We have further incorporated genes from this human radiation signature into a rapid and high-throughput chemical ligation-dependent probe amplification assay (CLPA) which was able to discriminate radiation dose levels in a pilot study of ex vivo irradiated human blood and samples from human TBI patients. Our results illustrate the potential for translation of a human genetic signature for the diagnosis of human radiation exposure and suggest the basis for further testing of CLPA as a candidate biodosimetric assay.Item Restricted Diagnosis of partial body radiation exposure in mice using peripheral blood gene expression profiles.(PLoS One, 2010-07-12) Meadows, Sarah K; Dressman, Holly K; Daher, Pamela; Himburg, Heather; Russell, J Lauren; Doan, Phuong; Chao, Nelson J; Lucas, Joseph; Nevins, Joseph R; Chute, John PIn the event of a terrorist-mediated attack in the United States using radiological or improvised nuclear weapons, it is expected that hundreds of thousands of people could be exposed to life-threatening levels of ionizing radiation. We have recently shown that genome-wide expression analysis of the peripheral blood (PB) can generate gene expression profiles that can predict radiation exposure and distinguish the dose level of exposure following total body irradiation (TBI). However, in the event a radiation-mass casualty scenario, many victims will have heterogeneous exposure due to partial shielding and it is unknown whether PB gene expression profiles would be useful in predicting the status of partially irradiated individuals. Here, we identified gene expression profiles in the PB that were characteristic of anterior hemibody-, posterior hemibody- and single limb-irradiation at 0.5 Gy, 2 Gy and 10 Gy in C57Bl6 mice. These PB signatures predicted the radiation status of partially irradiated mice with a high level of accuracy (range 79-100%) compared to non-irradiated mice. Interestingly, PB signatures of partial body irradiation were poorly predictive of radiation status by site of injury (range 16-43%), suggesting that the PB molecular response to partial body irradiation was anatomic site specific. Importantly, PB gene signatures generated from TBI-treated mice failed completely to predict the radiation status of partially irradiated animals or non-irradiated controls. These data demonstrate that partial body irradiation, even to a single limb, generates a characteristic PB signature of radiation injury and thus may necessitate the use of multiple signatures, both partial body and total body, to accurately assess the status of an individual exposed to radiation.Item Open Access Epidermal growth factor regulates hematopoietic regeneration after radiation injury.(Nat Med, 2013-03) Doan, Phuong L; Himburg, Heather A; Helms, Katherine; Russell, J Lauren; Fixsen, Emma; Quarmyne, Mamle; Harris, Jeffrey R; Deoliviera, Divino; Sullivan, Julie M; Chao, Nelson J; Kirsch, David G; Chute, John PThe mechanisms that regulate hematopoietic stem cell (HSC) regeneration after myelosuppressive injury are not well understood. We identified epidermal growth factor (EGF) to be highly enriched in the bone marrow serum of mice bearing deletion of Bak and Bax in TIE2-expressing cells in Tie2Cre; Bak1(-/-); Bax(flox/-) mice. These mice showed radioprotection of the HSC pool and 100% survival after a lethal dose of total-body irradiation (TBI). Bone marrow HSCs from wild-type mice expressed functional EGF receptor (EGFR), and systemic administration of EGF promoted the recovery of the HSC pool in vivo and improved the survival of mice after TBI. Conversely, administration of erlotinib, an EGFR antagonist, decreased both HSC regeneration and the survival of mice after TBI. Mice with EGFR deficiency in VAV-expressing hematopoietic cells also had delayed recovery of bone marrow stem and progenitor cells after TBI. Mechanistically, EGF reduced radiation-induced apoptosis of HSCs and mediated this effect through repression of the proapoptotic protein PUMA. Our findings show that EGFR signaling regulates HSC regeneration after myelosuppressive injury.Item Open Access Gene expression signatures that predict radiation exposure in mice and humans.(PLoS Med, 2007-04) Dressman, Holly K; Muramoto, Garrett G; Chao, Nelson J; Meadows, Sarah; Marshall, Dawn; Ginsburg, Geoffrey S; Nevins, Joseph R; Chute, John PBACKGROUND: The capacity to assess environmental inputs to biological phenotypes is limited by methods that can accurately and quantitatively measure these contributions. One such example can be seen in the context of exposure to ionizing radiation. METHODS AND FINDINGS: We have made use of gene expression analysis of peripheral blood (PB) mononuclear cells to develop expression profiles that accurately reflect prior radiation exposure. We demonstrate that expression profiles can be developed that not only predict radiation exposure in mice but also distinguish the level of radiation exposure, ranging from 50 cGy to 1,000 cGy. Likewise, a molecular signature of radiation response developed solely from irradiated human patient samples can predict and distinguish irradiated human PB samples from nonirradiated samples with an accuracy of 90%, sensitivity of 85%, and specificity of 94%. We further demonstrate that a radiation profile developed in the mouse can correctly distinguish PB samples from irradiated and nonirradiated human patients with an accuracy of 77%, sensitivity of 82%, and specificity of 75%. Taken together, these data demonstrate that molecular profiles can be generated that are highly predictive of different levels of radiation exposure in mice and humans. CONCLUSIONS: We suggest that this approach, with additional refinement, could provide a method to assess the effects of various environmental inputs into biological phenotypes as well as providing a more practical application of a rapid molecular screening test for the diagnosis of radiation exposure.Item Open Access Outcome of transplantation for acute lymphoblastic leukemia in children with Down syndrome.(Pediatric blood & cancer, 2014-06) Hitzler, Johann K; He, Wensheng; Doyle, John; Cairo, Mitchell; Camitta, Bruce M; Chan, Ka Wah; Diaz Perez, Miguel A; Fraser, Christopher; Gross, Thomas G; Horan, John T; Kennedy-Nasser, Alana A; Kitko, Carrie; Kurtzberg, Joanne; Lehmann, Leslie; O'Brien, Tracey; Pulsipher, Michael A; Smith, Franklin O; Zhang, Mei-Jie; Eapen, Mary; Carpenter, Paul A; CIBMTR Pediatric Cancer Working CommitteeWe report on 27 patients with Down syndrome (DS) and acute lymphoblastic leukemia (ALL) who received allogeneic hematopoietic cell transplantation (HCT) between 2000 and 2009. Seventy-eight percent of patients received myeloablative conditioning and 52% underwent transplantation in second remission. Disease-free survival (DFS) was 24% at a median of 3 years. Post-transplant leukemic relapse was more frequent than expected for children with DS-ALL (54%) than for non-DS ALL. These data suggest leukemic relapse rather than transplant toxicity is the most important cause of treatment failure. Advancements in leukemia control are especially needed for improvement in HCT outcomes for DS-ALL.Item Open Access Umbilical Cord Blood Transplantation in Children with Acute Leukemia: Impact of Conditioning on Transplantation Outcomes.(Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation, 2017-10) Eapen, Mary; Kurtzberg, Joanne; Zhang, Mei-Jie; Hattersely, Gareth; Fei, Mingwei; Mendizabal, Adam; Chan, Ka Wah; De Oliveira, Satiro; Schultz, Kirk R; Wall, Donna; Horowitz, Mary M; Wagner, John EThe Blood and Marrow Transplant Clinical Trials Network (BMT CTN 0501) randomized children with hematologic malignancies to transplantation with 1 or 2 cord blood units (UCB) between 2006 and 2012. While the trial concluded that survival was similar regardless of number of units infused, survival was better than previously reported. This prompted a comparison of survival of trial versus nontrial patients to determine the generalizability of trial results and whether survival was better because of the trial treatment regimen. During the trial period, 396 recipients of a single UCB unit met trial eligibility but were not enrolled. Trial patients (n = 100) received total body irradiation (TBI) 1320 cGy, cyclophosphamide 120 mg/kg, and fludarabine 75 mg/m2 (TCF). Nontrial patients either received the same regimen (n = 62; nontrial TCF) or alternative regimens (n = 334; nontrial regimens). Five-year survival between trial and nontrial patients conditioned with TCF was similar (70% versus 62%). However, 5-year survival was significantly lower with nontrial TBI-containing (47%; hazard ratio [HR], 1.97; P = .001) and chemotherapy-only regimens (49%; HR, 1.87; P = .007). The results of BMT CTN 0501 appear generalizable to the population of trial-eligible patients. The survival difference between the trial-specified regimen and other regimens indicate the importance of conditioning regimen for UCB transplantation.