Browsing by Subject "Writing"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Open Access Memory and learning for a novel written style.(Mem Cognit, 1998-07) Zervakis, J; Rubin, DCSubjects read and recalled a series of five short stories in one of four plot and style combinations. The stories were written in one of two styles that consisted of opposing clause orders (i.e., independent-dependent vs. dependent-independent), tense forms (i.e., past vs. present), and descriptor forms (modifier modifier vs. modifier as a noun). The subjects incorporated both plot and style characteristics into their recalls. Other subjects, who, after five recalls, either generated a new story or listed the rules that had been followed by the stories read, included the marked forms of the characteristics they learned more often, except for tense. The subjects read and recalled four stories of the same plot and style and then read and recalled a fifth story of the same plot and style or of one of the other three plot/style combinations. Ability to switch style depended on both the characteristic and the markedness.Item Open Access Postsecondary Faculty Attitudes and Beliefs about Writing-Based Pedagogies in the STEM Classroom.(CBE life sciences education, 2022-09) Finkenstaedt-Quinn, Solaire A; Gere, Anne Ruggles; Dowd, Jason E; Thompson, Robert J; Halim, Audrey S; Reynolds, Julie A; Schiff, Leslie A; Flash, Pamela; Shultz, Ginger VWriting is an important skill for communicating knowledge in science, technology, engineering, and mathematics (STEM) and an aid to developing students' communication skills, content knowledge, and disciplinary thinking. Despite the importance of writing, its incorporation into the undergraduate STEM curriculum is uneven. Research indicates that understanding faculty beliefs is important when trying to propagate evidence-based instructional practices, yet faculty beliefs about writing pedagogies are not yet broadly characterized for STEM teaching at the undergraduate level. Based on a nationwide cross-disciplinary survey at research-intensive institutions, this work aims to understand the extent to which writing is assigned in undergraduate STEM courses and the factors that influence faculty members' beliefs about, and reported use of, writing-based pedagogies. Faculty attitudes about the effectiveness of writing practices did not differ between faculty who assign and do not assign writing; rather, beliefs about the influence of social factors and contextually imposed instructional constraints informed their decisions to use or not use writing. Our findings indicate that strategies to increase the use of writing need to specifically target the factors that influence faculty decisions to assign or not assign writing. It is not faculty beliefs about effectiveness, but rather faculty beliefs about behavioral control and constraints at the departmental level that need to be targeted.Item Open Access Scientific writing: a randomized controlled trial comparing standard and on-line instruction.(BMC Med Educ, 2009-05-27) Phadtare, A; Bahmani, A; Shah, A; Pietrobon, RBACKGROUND: Writing plays a central role in the communication of scientific ideas and is therefore a key aspect in researcher education, ultimately determining the success and long-term sustainability of their careers. Despite the growing popularity of e-learning, we are not aware of any existing study comparing on-line vs. traditional classroom-based methods for teaching scientific writing. METHODS: Forty eight participants from a medical, nursing and physiotherapy background from US and Brazil were randomly assigned to two groups (n = 24 per group): An on-line writing workshop group (on-line group), in which participants used virtual communication, google docs and standard writing templates, and a standard writing guidance training (standard group) where participants received standard instruction without the aid of virtual communication and writing templates. Two outcomes, manuscript quality was assessed using the scores obtained in Six subgroup analysis scale as the primary outcome measure, and satisfaction scores with Likert scale were evaluated. To control for observer variability, inter-observer reliability was assessed using Fleiss's kappa. A post-hoc analysis comparing rates of communication between mentors and participants was performed. Nonparametric tests were used to assess intervention efficacy. RESULTS: Excellent inter-observer reliability among three reviewers was found, with an Intraclass Correlation Coefficient (ICC) agreement = 0.931882 and ICC consistency = 0.932485. On-line group had better overall manuscript quality (p = 0.0017, SSQSavg score 75.3 +/- 14.21, ranging from 37 to 94) compared to the standard group (47.27 +/- 14.64, ranging from 20 to 72). Participant satisfaction was higher in the on-line group (4.3 +/- 0.73) compared to the standard group (3.09 +/- 1.11) (p = 0.001). The standard group also had fewer communication events compared to the on-line group (0.91 +/- 0.81 vs. 2.05 +/- 1.23; p = 0.0219). CONCLUSION: Our protocol for on-line scientific writing instruction is better than standard face-to-face instruction in terms of writing quality and student satisfaction. Future studies should evaluate the protocol efficacy in larger longitudinal cohorts involving participants from different languages.Item Open Access Student Learning Dispositions: Multidimensional Profiles Highlight Important Differences among Undergraduate STEM Honors Thesis Writers.(CBE life sciences education, 2019-06) Dowd, Jason E; Thompson, Robert J; Schiff, Leslie; Haas, Kelaine; Hohmann, Christine; Roy, Chris; Meck, Warren; Bruno, John; Reynolds, Julie AVarious personal dimensions of students-particularly motivation, self-efficacy beliefs, and epistemic beliefs-can change in response to teaching, affect student learning, and be conceptualized as learning dispositions. We propose that these learning dispositions serve as learning outcomes in their own right; that patterns of interrelationships among these specific learning dispositions are likely; and that differing constellations (or learning disposition profiles) may have meaningful implications for instructional practices. In this observational study, we examine changes in these learning dispositions in the context of six courses at four institutions designed to scaffold undergraduate thesis writing and promote students' scientific reasoning in writing in science, technology, engineering, and mathematics. We explore the utility of cluster analysis for generating meaningful learning disposition profiles and building a more sophisticated understanding of students as complex, multidimensional learners. For example, while students' self-efficacy beliefs about writing and science increased across capstone writing courses on average, there was considerable variability at the level of individual students. When responses on all of the personal dimensions were analyzed jointly using cluster analysis, several distinct and meaningful learning disposition profiles emerged. We explore these profiles in this work and discuss the implications of this framework for describing developmental trajectories of students' scientific identities.Item Open Access Understanding the Complex Relationship between Critical Thinking and Science Reasoning among Undergraduate Thesis Writers.(CBE life sciences education, 2018-01) Dowd, Jason E; Thompson, Robert J; Schiff, Leslie A; Reynolds, Julie ADeveloping critical-thinking and scientific reasoning skills are core learning objectives of science education, but little empirical evidence exists regarding the interrelationships between these constructs. Writing effectively fosters students' development of these constructs, and it offers a unique window into studying how they relate. In this study of undergraduate thesis writing in biology at two universities, we examine how scientific reasoning exhibited in writing (assessed using the Biology Thesis Assessment Protocol) relates to general and specific critical-thinking skills (assessed using the California Critical Thinking Skills Test), and we consider implications for instruction. We find that scientific reasoning in writing is strongly related to inference, while other aspects of science reasoning that emerge in writing (epistemological considerations, writing conventions, etc.) are not significantly related to critical-thinking skills. Science reasoning in writing is not merely a proxy for critical thinking. In linking features of students' writing to their critical-thinking skills, this study 1) provides a bridge to prior work suggesting that engagement in science writing enhances critical thinking and 2) serves as a foundational step for subsequently determining whether instruction focused explicitly on developing critical-thinking skills (particularly inference) can actually improve students' scientific reasoning in their writing.Item Open Access Want to improve undergraduate thesis writing? Engage students and their faculty readers in scientific peer review.(CBE life sciences education, 2011-01) Reynolds, Julie A; Thompson, Robert JOne of the best opportunities that undergraduates have to learn to write like a scientist is to write a thesis after participating in faculty-mentored undergraduate research. But developing writing skills doesn't happen automatically, and there are significant challenges associated with offering writing courses and with individualized mentoring. We present a hybrid model in which students have the structural support of a course plus the personalized benefits of working one-on-one with faculty. To optimize these one-on-one interactions, the course uses BioTAP, the Biology Thesis Assessment Protocol, to structure engagement in scientific peer review. By assessing theses written by students who took this course and comparable students who did not, we found that our approach not only improved student writing but also helped faculty members across the department--not only those teaching the course--to work more effectively and efficiently with student writers. Students who enrolled in this course were more likely to earn highest honors than students who only worked one-on-one with faculty. Further, students in the course scored significantly better on all higher-order writing and critical-thinking skills assessed.Item Open Access WriteSim TCExam--an open source text simulation environment for training novice researchers in scientific writing.(BMC Med Educ, 2010-05-28) Shah, Jatin; Rajgor, Dimple; Vaghasia, Meenakshi; Phadtare, Amruta; Pradhan, Shreyasee; Carvalho, Elias; Pietrobon, RicardoBACKGROUND: The ability to write clearly and effectively is of central importance to the scientific enterprise. Encouraged by the success of simulation environments in other biomedical sciences, we developed WriteSim TCExam, an open-source, Web-based, textual simulation environment for teaching effective writing techniques to novice researchers. We shortlisted and modified an existing open source application - TCExam to serve as a textual simulation environment. After testing usability internally in our team, we conducted formal field usability studies with novice researchers. These were followed by formal surveys with researchers fitting the role of administrators and users (novice researchers) RESULTS: The development process was guided by feedback from usability tests within our research team. Online surveys and formal studies, involving members of the Research on Research group and selected novice researchers, show that the application is user-friendly. Additionally it has been used to train 25 novice researchers in scientific writing to date and has generated encouraging results. CONCLUSION: WriteSim TCExam is the first Web-based, open-source textual simulation environment designed to complement traditional scientific writing instruction. While initial reviews by students and educators have been positive, a formal study is needed to measure its benefits in comparison to standard instructional methods.