Browsing by Subject "X-Ray Diffraction"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Control of the orientational order and nonlinear optical response of the "push-pull" chromophore RuPZn via specific incorporation into densely packed monolayer ensembles of an amphiphilic four-helix bundle peptide: characterization of the peptide-chromophore complexes.(J Am Chem Soc, 2010-08-18) Krishnan, Venkata; Tronin, Andrey; Strzalka, Joseph; Fry, H Christopher; Therien, Michael J; Blasie, J Kent"Push-pull" chromophores based on extended pi-electron systems have been designed to exhibit exceptionally large molecular hyperpolarizabilities. We have engineered an amphiphilic four-helix bundle peptide to vectorially incorporate such hyperpolarizable chromophores having a metalloporphyrin moiety, with high specificity into the interior core of the bundle. The amphiphilic exterior of the bundle facilitates the formation of densely packed monolayer ensembles of the vectorially oriented peptide-chromophore complexes at the liquid-gas interface. Chemical specificity designed into the ends of the bundle facilitates the subsequent covalent attachment of these monolayer ensembles onto the surface of an inorganic substrate. In this article, we describe the structural characterization of these monolayer ensembles at each stage of their fabrication for one such peptide-chromophore complex designated as AP0-RuPZn. In the accompanying article, we describe the characterization of their macroscopic nonlinear optical properties.Item Open Access Purification, crystallization and preliminary X-ray diffraction studies of a complex between G protein-coupled receptor kinase 2 and Gbeta1gamma2.(Acta Crystallogr D Biol Crystallogr, 2003-05) Lodowski, David T; Barnhill, Jennifer F; Pitcher, Julie A; Capel, W Darrell; Lefkowitz, Robert J; Tesmer, John JGG protein-coupled receptor kinase 2 (GRK2) phosphorylates activated G protein-coupled receptors (GPCRs), which ultimately leads to their desensitization and/or downregulation. The enzyme is recruited to the plasma membrane via the interaction of its carboxyl-terminal pleckstrin-homology (PH) domain with the beta and gamma subunits of heterotrimeric G proteins (Gbetagamma). An improved purification scheme for GRK2 has been developed, conditions under which GRK2 forms a complex with Gbeta(1)gamma(2) have been determined and the complex has been crystallized in CHAPS detergent micelles. Crystals of the GRK2-Gbetagamma complex belong to space group C2 and have unit-cell parameters a = 187.0, b = 72.1, c = 122.0 A, beta = 115.2 degrees. A complete data set has been collected to 3.2 A resolution with Cu Kalpha radiation.