Browsing by Subject "X-ray"
Results Per Page
Sort Options
Item Open Access Advanced Techniques for Image Quality Assessment of Modern X-ray Computed Tomography Systems(2016) Solomon, Justin BennionX-ray computed tomography (CT) imaging constitutes one of the most widely used diagnostic tools in radiology today with nearly 85 million CT examinations performed in the U.S in 2011. CT imparts a relatively high amount of radiation dose to the patient compared to other x-ray imaging modalities and as a result of this fact, coupled with its popularity, CT is currently the single largest source of medical radiation exposure to the U.S. population. For this reason, there is a critical need to optimize CT examinations such that the dose is minimized while the quality of the CT images is not degraded. This optimization can be difficult to achieve due to the relationship between dose and image quality. All things being held equal, reducing the dose degrades image quality and can impact the diagnostic value of the CT examination.
A recent push from the medical and scientific community towards using lower doses has spawned new dose reduction technologies such as automatic exposure control (i.e., tube current modulation) and iterative reconstruction algorithms. In theory, these technologies could allow for scanning at reduced doses while maintaining the image quality of the exam at an acceptable level. Therefore, there is a scientific need to establish the dose reduction potential of these new technologies in an objective and rigorous manner. Establishing these dose reduction potentials requires precise and clinically relevant metrics of CT image quality, as well as practical and efficient methodologies to measure such metrics on real CT systems. The currently established methodologies for assessing CT image quality are not appropriate to assess modern CT scanners that have implemented those aforementioned dose reduction technologies.
Thus the purpose of this doctoral project was to develop, assess, and implement new phantoms, image quality metrics, analysis techniques, and modeling tools that are appropriate for image quality assessment of modern clinical CT systems. The project developed image quality assessment methods in the context of three distinct paradigms, (a) uniform phantoms, (b) textured phantoms, and (c) clinical images.
The work in this dissertation used the “task-based” definition of image quality. That is, image quality was broadly defined as the effectiveness by which an image can be used for its intended task. Under this definition, any assessment of image quality requires three components: (1) A well defined imaging task (e.g., detection of subtle lesions), (2) an “observer” to perform the task (e.g., a radiologists or a detection algorithm), and (3) a way to measure the observer’s performance in completing the task at hand (e.g., detection sensitivity/specificity).
First, this task-based image quality paradigm was implemented using a novel multi-sized phantom platform (with uniform background) developed specifically to assess modern CT systems (Mercury Phantom, v3.0, Duke University). A comprehensive evaluation was performed on a state-of-the-art CT system (SOMATOM Definition Force, Siemens Healthcare) in terms of noise, resolution, and detectability as a function of patient size, dose, tube energy (i.e., kVp), automatic exposure control, and reconstruction algorithm (i.e., Filtered Back-Projection– FPB vs Advanced Modeled Iterative Reconstruction– ADMIRE). A mathematical observer model (i.e., computer detection algorithm) was implemented and used as the basis of image quality comparisons. It was found that image quality increased with increasing dose and decreasing phantom size. The CT system exhibited nonlinear noise and resolution properties, especially at very low-doses, large phantom sizes, and for low-contrast objects. Objective image quality metrics generally increased with increasing dose and ADMIRE strength, and with decreasing phantom size. The ADMIRE algorithm could offer comparable image quality at reduced doses or improved image quality at the same dose (increase in detectability index by up to 163% depending on iterative strength). The use of automatic exposure control resulted in more consistent image quality with changing phantom size.
Based on those results, the dose reduction potential of ADMIRE was further assessed specifically for the task of detecting small (<=6 mm) low-contrast (<=20 HU) lesions. A new low-contrast detectability phantom (with uniform background) was designed and fabricated using a multi-material 3D printer. The phantom was imaged at multiple dose levels and images were reconstructed with FBP and ADMIRE. Human perception experiments were performed to measure the detection accuracy from FBP and ADMIRE images. It was found that ADMIRE had equivalent performance to FBP at 56% less dose.
Using the same image data as the previous study, a number of different mathematical observer models were implemented to assess which models would result in image quality metrics that best correlated with human detection performance. The models included naïve simple metrics of image quality such as contrast-to-noise ratio (CNR) and more sophisticated observer models such as the non-prewhitening matched filter observer model family and the channelized Hotelling observer model family. It was found that non-prewhitening matched filter observers and the channelized Hotelling observers both correlated strongly with human performance. Conversely, CNR was found to not correlate strongly with human performance, especially when comparing different reconstruction algorithms.
The uniform background phantoms used in the previous studies provided a good first-order approximation of image quality. However, due to their simplicity and due to the complexity of iterative reconstruction algorithms, it is possible that such phantoms are not fully adequate to assess the clinical impact of iterative algorithms because patient images obviously do not have smooth uniform backgrounds. To test this hypothesis, two textured phantoms (classified as gross texture and fine texture) and a uniform phantom of similar size were built and imaged on a SOMATOM Flash scanner (Siemens Healthcare). Images were reconstructed using FBP and a Sinogram Affirmed Iterative Reconstruction (SAFIRE). Using an image subtraction technique, quantum noise was measured in all images of each phantom. It was found that in FBP, the noise was independent of the background (textured vs uniform). However, for SAFIRE, noise increased by up to 44% in the textured phantoms compared to the uniform phantom. As a result, the noise reduction from SAFIRE was found to be up to 66% in the uniform phantom but as low as 29% in the textured phantoms. Based on this result, it clear that further investigation was needed into to understand the impact that background texture has on image quality when iterative reconstruction algorithms are used.
To further investigate this phenomenon with more realistic textures, two anthropomorphic textured phantoms were designed to mimic lung vasculature and fatty soft tissue texture. The phantoms (along with a corresponding uniform phantom) were fabricated with a multi-material 3D printer and imaged on the SOMATOM Flash scanner. Scans were repeated a total of 50 times in order to get ensemble statistics of the noise. A novel method of estimating the noise power spectrum (NPS) from irregularly shaped ROIs was developed. It was found that SAFIRE images had highly locally non-stationary noise patterns with pixels near edges having higher noise than pixels in more uniform regions. Compared to FBP, SAFIRE images had 60% less noise on average in uniform regions for edge pixels, noise was between 20% higher and 40% lower. The noise texture (i.e., NPS) was also highly dependent on the background texture for SAFIRE. Therefore, it was concluded that quantum noise properties in the uniform phantoms are not representative of those in patients for iterative reconstruction algorithms and texture should be considered when assessing image quality of iterative algorithms.
The move beyond just assessing noise properties in textured phantoms towards assessing detectability, a series of new phantoms were designed specifically to measure low-contrast detectability in the presence of background texture. The textures used were optimized to match the texture in the liver regions actual patient CT images using a genetic algorithm. The so called “Clustured Lumpy Background” texture synthesis framework was used to generate the modeled texture. Three textured phantoms and a corresponding uniform phantom were fabricated with a multi-material 3D printer and imaged on the SOMATOM Flash scanner. Images were reconstructed with FBP and SAFIRE and analyzed using a multi-slice channelized Hotelling observer to measure detectability and the dose reduction potential of SAFIRE based on the uniform and textured phantoms. It was found that at the same dose, the improvement in detectability from SAFIRE (compared to FBP) was higher when measured in a uniform phantom compared to textured phantoms.
The final trajectory of this project aimed at developing methods to mathematically model lesions, as a means to help assess image quality directly from patient images. The mathematical modeling framework is first presented. The models describe a lesion’s morphology in terms of size, shape, contrast, and edge profile as an analytical equation. The models can be voxelized and inserted into patient images to create so-called “hybrid” images. These hybrid images can then be used to assess detectability or estimability with the advantage that the ground truth of the lesion morphology and location is known exactly. Based on this framework, a series of liver lesions, lung nodules, and kidney stones were modeled based on images of real lesions. The lesion models were virtually inserted into patient images to create a database of hybrid images to go along with the original database of real lesion images. ROI images from each database were assessed by radiologists in a blinded fashion to determine the realism of the hybrid images. It was found that the radiologists could not readily distinguish between real and virtual lesion images (area under the ROC curve was 0.55). This study provided evidence that the proposed mathematical lesion modeling framework could produce reasonably realistic lesion images.
Based on that result, two studies were conducted which demonstrated the utility of the lesion models. The first study used the modeling framework as a measurement tool to determine how dose and reconstruction algorithm affected the quantitative analysis of liver lesions, lung nodules, and renal stones in terms of their size, shape, attenuation, edge profile, and texture features. The same database of real lesion images used in the previous study was used for this study. That database contained images of the same patient at 2 dose levels (50% and 100%) along with 3 reconstruction algorithms from a GE 750HD CT system (GE Healthcare). The algorithms in question were FBP, Adaptive Statistical Iterative Reconstruction (ASiR), and Model-Based Iterative Reconstruction (MBIR). A total of 23 quantitative features were extracted from the lesions under each condition. It was found that both dose and reconstruction algorithm had a statistically significant effect on the feature measurements. In particular, radiation dose affected five, three, and four of the 23 features (related to lesion size, conspicuity, and pixel-value distribution) for liver lesions, lung nodules, and renal stones, respectively. MBIR significantly affected 9, 11, and 15 of the 23 features (including size, attenuation, and texture features) for liver lesions, lung nodules, and renal stones, respectively. Lesion texture was not significantly affected by radiation dose.
The second study demonstrating the utility of the lesion modeling framework focused on assessing detectability of very low-contrast liver lesions in abdominal imaging. Specifically, detectability was assessed as a function of dose and reconstruction algorithm. As part of a parallel clinical trial, images from 21 patients were collected at 6 dose levels per patient on a SOMATOM Flash scanner. Subtle liver lesion models (contrast = -15 HU) were inserted into the raw projection data from the patient scans. The projections were then reconstructed with FBP and SAFIRE (strength 5). Also, lesion-less images were reconstructed. Noise, contrast, CNR, and detectability index of an observer model (non-prewhitening matched filter) were assessed. It was found that SAFIRE reduced noise by 52%, reduced contrast by 12%, increased CNR by 87%. and increased detectability index by 65% compared to FBP. Further, a 2AFC human perception experiment was performed to assess the dose reduction potential of SAFIRE, which was found to be 22% compared to the standard of care dose.
In conclusion, this dissertation provides to the scientific community a series of new methodologies, phantoms, analysis techniques, and modeling tools that can be used to rigorously assess image quality from modern CT systems. Specifically, methods to properly evaluate iterative reconstruction have been developed and are expected to aid in the safe clinical implementation of dose reduction technologies.
Item Open Access Coded Aperture X-ray Tomographic Imaging with Energy Sensitive Detectors(2017) Hassan, MehadiCoherent scatter imaging techniques have experienced a renaissance in the past two decades from an evolution of detector technology and computational imaging techniques. X-ray diffraction requires a precise knowledge of object location and is time consuming; transforming diffractometry into a practical imaging technique involves spatially resolving the sample in 3-dimensions and speeding up the measurement process. The introduction of a coded aperture in a conventional X-ray diffraction system provides 3D localization of the scatterer as well as drastic reductions in the acquisition time due to the ability to perform multiplexed measurements. This theses document contains two strategies involving coded apertures to address the aforementioned challenges of X-ray coherent scatter measurements.
The first technique places the coded aperture between source and object to structure the incident illumination. A single pixel detector captures temporally modulated coherent scatter data from an object as it travels through the illumination. From these measurements, 2D spatial and 1D spectral information is recovered at each point within a planar slice of an object. Compared to previous techniques, this approach is able to reduce the overall scan time of objects by 1-2 orders of magnitude.
The second measurement technique demonstrates snapshot coherent scatter tomography. A planar slice of an object is illuminated by a fan beam and the scatter data is modulated by a coded aperture between object and detector. The spatially modulated data is captured with a linear array of energy sensitive detectors, and the recovered data shows that the system can image objects that are 13 mm in range and 2 mm in cross range with a fractional momentum transfer resolution of 15\%. The technique also allows a 100x speedup when compared to pencil beam systems using the same components.
Continuing with the theme of snapshot tomography with energy sensitive detectors, I study the impact of detectors properties such as detection area, choice of energies and energy resolution for pencil and fan beam coded aperture coherent scatter systems. I simulate various detector geometries and determine that energy resolution has the largest impact for pencil beam geometries while detector area has the largest impact for fan beam geometries. These results can be used to build detectors which can potentially help implement pencil and/or fan beam coded aperture coherent scatter systems in applications involving medicine and security.
Item Open Access Coding Strategies for X-ray Tomography(2016) Holmgren, AndrewThis work focuses on the construction and application of coded apertures to compressive X-ray tomography. Coded apertures can be made in a number of ways, each method having an impact on system background and signal contrast. Methods of constructing coded apertures for structuring X-ray illumination and scatter are compared and analyzed. Apertures can create structured X-ray bundles that investigate specific sets of object voxels. The tailored bundles of rays form a code (or pattern) and are later estimated through computational inversion. Structured illumination can be used to subsample object voxels and make inversion feasible for low dose computed tomography (CT) systems, or it can be used to reduce background in limited angle CT systems.
On the detection side, coded apertures modulate X-ray scatter signals to determine the position and radiance of scatter points. By forming object dependent projections in measurement space, coded apertures multiplex modulated scatter signals onto a detector. The multiplexed signals can be inverted with knowledge of the code pattern and system geometry. This work shows two systems capable of determining object position and type in a 2D plane, by illuminating objects with an X-ray `fan beam,' using coded apertures and compressive measurements. Scatter tomography can help identify materials in security and medicine that may be ambiguous with transmission tomography alone.
Item Open Access Design and Implementation of an Institution-Wide Patient-Specific Radiation Dose Monitoring Program for Computed Tomography, Digital Radiography, and Nuclear Medicine(2011) Christianson, OlavRecently, there has been renewed interest in decreasing radiation dose to patients from diagnostic imaging procedures. So far, efforts to decrease radiation dose have focused on the amount of radiation delivered from typical techniques and fail to capture the variation in radiation dose between patients. Despite the feasibility of estimating patient-specific radiation doses and the potential for this practice to aid in protocol optimization, it is not currently standard procedure for hospitals to monitor radiation dose for all patients. To address this shortcoming, we have developed an institution-wide patient-specific radiation dose monitoring program for computed tomography, digital radiography, and nuclear medicine.
Item Open Access Micro-CT of rodents: state-of-the-art and future perspectives.(Phys Med, 2014-09) Clark, DP; Badea, CTMicron-scale computed tomography (micro-CT) is an essential tool for phenotyping and for elucidating diseases and their therapies. This work is focused on preclinical micro-CT imaging, reviewing relevant principles, technologies, and applications. Commonly, micro-CT provides high-resolution anatomic information, either on its own or in conjunction with lower-resolution functional imaging modalities such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT). More recently, however, advanced applications of micro-CT produce functional information by translating clinical applications to model systems (e.g., measuring cardiac functional metrics) and by pioneering new ones (e.g. measuring tumor vascular permeability with nanoparticle contrast agents). The primary limitations of micro-CT imaging are the associated radiation dose and relatively poor soft tissue contrast. We review several image reconstruction strategies based on iterative, statistical, and gradient sparsity regularization, demonstrating that high image quality is achievable with low radiation dose given ever more powerful computational resources. We also review two contrast mechanisms under intense development. The first is spectral contrast for quantitative material discrimination in combination with passive or actively targeted nanoparticle contrast agents. The second is phase contrast which measures refraction in biological tissues for improved contrast and potentially reduced radiation dose relative to standard absorption imaging. These technological advancements promise to develop micro-CT into a commonplace, functional and even molecular imaging modality.Item Open Access Optimization of X-Ray Diffraction Imaging of Medical Specimens by Monte Carlo(2019) Japzon, MatthewOur research group has previously described the development and testing of a coherent-scatter spectral imaging system for identification of cancer using surrogate phantoms, formalin-fixed pathology tissues and, more recently, surgically resected breast tumor. Here we present the implementation of a Monte-Carlo simulation tool for optimization of the imaging system.
MC-GPU, a GPU-enabled Monte Carlo software was modified and used to simulate X-ray diffraction experiments for combinations of X-ray spectra (tungsten and molybdenum anode), kV (15-150), filtration (material and thickness) and phantom geometry and material (normal, adipose, fibroglandular, and cancerous breast tissue). For each combination, a simulated measurement of contrast-to-noise (CNR), signal strength and object detectability were assessed.
Examination of Monte Carlo simulations showed optimal spectrum characterization strategies that exploit spectral and filter characteristics to increase material identification probabilities via momentum transfer measurement. Increased detectability was shown with molybdenum energy spectra, and a higher CNR metric was observed to show better pathological assessments and findings of cancer.
This work demonstrates the utility of Monte Carlo methods and MCGPU in optimizing coherent scatter imaging systems and can be used to provide insightful information regarding the design of coherent scatter imaging systems for material classification breast tissue types.
Item Open Access Structural Studies of Phospho-MurNAc-pentapeptide Translocase and Ternary Complex of a NaV C-Terminal Domain, a Fibroblast Growth Factor Homologous Factor, and Calmodulin(2013) Chung, ChihPinPhospho-MurNAc-pentapeptide translocase (MraY) is a conserved membrane-spanning enzyme involved in the biosynthesis of bacterial cell walls. MraY generates lipid I by transferring the phospho-MurNAc-pentapeptide to the lipid carrier undecaprenyl-phosphate. MraY is a primary target for antibiotic development because it is essential in peptidoglycan synthesis and targeted by 5 classes of natural product antibiotics. The structure of this enzyme will provide insight into the catalytic mechanism and a platform for future antibiotic development. MraY genes from 19 bacteria were cloned, expressed, purified and assayed for biochemical stability. After initial crystallization screening, I found that MraY from Aquifex aeolicus (MraYAA) produced diffracting crystals. Recombinant MraYAA is functional and shows inhibition by the natural inhibitor capuramycin. After extensive optimization of crystallization conditions, we extended the resolution limit of the crystal to 3.3 Å. The crystal structure, the first structure of the polyprenyl-phosphate N-acetyl hexosamine 1-phosphate transferase (PNPT) superfamily, reveals the architecture of MraYAA and together with functional studies, allow us to identify the location of Mg2+ at the active site and the putative binding sites of both substrates. My crystallographic studies provide insights into the mechanism of how MraY attaches a building block of peptidoglycan to the carrier lipid.
Voltage-gated Na+ (NaV) channels initiate action potentials in neurons and cardiac myocytes. NaV channels are composed of a transmembrane domain responsible for voltage-dependent Na+ conduction and a cytosolic C-terminal domain (CTD) that regulates channel function through interactions with many auxiliary proteins including members of the fibroblast growth factor homologous factor (FHF) family and calmodulin (CaM). Through the collaboration between our lab and Geoffrey Pitt's lab, we report the first crystal structure of the ternary complex of the human NaV1.5 CTD, FGF13, and Ca2+-free CaM at 2.2 Å. Combined with functional experiments based on structural insights, we present a platform to understand roles of these auxiliary proteins in NaV channel regulation and the molecular basis of mutations that lead to neuronal and cardiac diseases. Furthermore, we identify a critical interaction that contributes to the specificity between individual NaV CTD isoforms and distinctive FHFs.
Item Open Access Tissue Equivalent Phantom Design for Optimization of a Coherent Scatter Imaging System(2016) Albanese, Kathryn ElizabethScatter in medical imaging is typically cast off as image-related noise that detracts from meaningful diagnosis. It is therefore typically rejected or removed from medical images. However, it has been found that every material, including cancerous tissue, has a unique X-ray coherent scatter signature that can be used to identify the material or tissue. Such scatter-based tissue-identification provides the advantage of locating and identifying particular materials over conventional anatomical imaging through X-ray radiography. A coded aperture X-ray coherent scatter spectral imaging system has been developed in our group to classify different tissue types based on their unique scatter signatures. Previous experiments using our prototype have demonstrated that the depth-resolved coherent scatter spectral imaging system (CACSSI) can discriminate healthy and cancerous tissue present in the path of a non-destructive x-ray beam. A key to the successful optimization of CACSSI as a clinical imaging method is to obtain anatomically accurate phantoms of the human body. This thesis describes the development and fabrication of 3D printed anatomical scatter phantoms of the breast and lung.
The purpose of this work is to accurately model different breast geometries using a tissue equivalent phantom, and to classify these tissues in a coherent x-ray scatter imaging system. Tissue-equivalent anatomical phantoms were designed to assess the capability of the CACSSI system to classify different types of breast tissue (adipose, fibroglandular, malignant). These phantoms were 3D printed based on DICOM data obtained from CT scans of prone breasts. The phantoms were tested through comparison of measured scatter signatures with those of adipose and fibroglandular tissue from literature. Tumors in the phantom were modeled using a variety of biological tissue including actual surgically excised benign and malignant tissue specimens. Lung based phantoms have also been printed for future testing. Our imaging system has been able to define the location and composition of the various materials in the phantom. These phantoms were used to characterize the CACSSI system in terms of beam width and imaging technique. The result of this work showed accurate modeling and characterization of the phantoms through comparison of the tissue-equivalent form factors to those from literature. The physical construction of the phantoms, based on actual patient anatomy, was validated using mammography and computed tomography to visually compare the clinical images to those of actual patient anatomy.