Browsing by Subject "Xenon"
Results Per Page
Sort Options
Item Open Access Dynamic 129Xe Magnetic Resonance Spectroscopy: Development and Application in Diverse Cardiopulmonary Diseases(2021) Bier, Elianna AdaChronic respiratory diseases are one of the leading causes of death in the US and a driving factor in their mortality rate is the presence of comorbid cardiovascular diseases such as pulmonary hypertension (PH). As an increasing number of patients exhibit concomitant cardiac and pulmonary disease it becomes progressively more difficult to determine disease etiology and thus the optimal treatment course. The current standard diagnostic methods are insensitive to the underlying cause of gas exchange impairment, are unable to differentiate between phenotypes, and have limited utility in assessing disease progression or therapy response. The primary diagnostic tools for assessing pulmonary function are collectively referred to as pulmonary function tests (PFTs). While these tests are simple and non-invasive, they are also a global measurement that is effort-dependent and has poor reproducibility. Furthermore, PFTs cannot separate the contribution of concomitant disease on their measurements. The diagnosis of PH and subsequent determination of World Health Organization (WHO) classification requires invasive right heart catheterization (RHC) to meet strict hemodynamic cutoffs. However, the RHC interpretation can be challenging in patients with complex disease because the effect of comorbidities on RHC measurements is unknown. Therefore, new non-invasive diagnostic tools must be developed that can assess gas exchange impairment and pulmonary hemodynamics in tandem for patients to receive optimal treatment.
Hyperpolarized 129Xe MR imaging (MRI) and spectroscopy (MRS) have emerged as a powerful tool for assessing the pulmonary environment due xenon exhibiting distinct chemical shifts as it diffuses from the airspaces, through the alveolar membrane, and interacts with red blood cells (RBCs). This unique property allows the 129Xe signal to be decomposed in order to separately measure or image the three gas exchange compartments (gas, barrier, and RBC). 129Xe gas exchange imaging is beginning to show exquisite sensitivity to a range of obstructive and restrictive diseases. Still, despite this sensitivity to disease burden, 129Xe imaging techniques are unable to probe pulmonary hemodynamics. Thus, it does not provide sensitivity to PH, one of the possible causes of dyspnea. Previous work has demonstrated that in 129Xe MRS the characteristics of the spectral peaks can detect diffusion impairments present in interstitial lung disease (ILD). Yet current 129Xe MRS techniques only investigate static measurements of an inherently dynamic process. It is possible to extend 129Xe MRS and collect spectra as a time-series in dynamic spectroscopy to assess the cardiogenic changes in spectral parameters that may be associated with the hemodynamic changes in PH.
The objective of this work is to establish methods using 129Xe MRI/MRS to differentiate between diverse cardiopulmonary diseases. To this end, we develop the technique of 129Xe dynamic spectroscopy and assesses its utility in differentiating pre-capillary and post-capillary PH. We also investigate quality assurance metrics and tools including the repeatability of spectroscopic measurements and a thermally polarized xenon phantom to help facilitate the transition of 129Xe MRI/MRS into a clinical tool.
The foundation of 129Xe dynamic spectroscopy is the decomposition of each static spectrum into its three separate components. This is achieved by fitting each spectrum in the time-series to a mathematical model that describes the shape of each peak. In Chapter 3, to characterize the spectral parameters more accurately, we analyzed 6 different mathematical models for 129Xe dissolved-phase MR spectroscopy. We demonstrate that the optimized spectroscopic fitting model is a barrier Voigt model where the RBC peak has a Lorentzian lineshape and the barrier peak is a Voigt profile. This model was used in dynamic spectroscopy to extract the area, chemical shift, linewidth, and phase of each peak.
In principle, the dynamic variations in the spectral parameters of each 129Xe resonance detected during the cardiac cycle can contain vital information on pulmonary hemodynamics. Thus, in Chapter 4 we developed techniques to quantify and assess the temporal changes in the spectroscopic parameters during inhale, breath-hold, and exhalation. We observed a distinct cardiogenic oscillation in the amplitude and chemical shift of the RBC peak. This oscillation was quantified by its peak-to-peak height. Furthermore, we identified static and spectral parameters that are statistically different between healthy volunteers and subjects with idiopathic pulmonary fibrosis (IPF). This study demonstrated that that 129Xe dynamic spectroscopy is sensitive to disease.
The initial characterization of a diverse array of diseases is essential to understand the relationship between 129Xe spectroscopy and the cardiopulmonary environment. Thus, Chapter 5 characterizes 129Xe MRI/MRS in healthy volunteers and subjects with chronic obstructive pulmonary disease (COPD), IPF, left heart failure (LHF), and pulmonary arterial hypertension (PAH). The chosen cohorts provide two forms of chronic lung disease (IPF, COPD) and two forms of PH (LHF, PAH) that have different impedance locations with respect to the pulmonary capillary bed. LHF is a form of post-capillary PH because the impedance to blood flow is downstream of the pulmonary capillary bed as left ventricular dysfunction leads to a sustained increase in left atrial pressure. On the other hand, PAH is a form of pre-capillary PH caused by occlusions upstream of the capillary bed. We found that while gas exchange imaging is essential in the discrimination of obstructive and interstitial disease, only the height of oscillations in the RBC amplitude was able to differentiate between the different types of PH.
To test the utility of 129Xe MRI/MRS in differentiating PH status, we designed a diagnostic algorithm in Chapter 6 to distinguish between pre-capillary PH, post-capillary PH, no PH, and interstitial lung disease (ILD). Algorithm performance was tested in a single-blind reader study in which three expert readers used 129Xe MRI/MRS to determine the PH status of 32 test subjects. The algorithm performed well on straightforward cases of PH. For subjects with concomitant disease, the combination of MRI/MRS provided additional insight to the complex pathophysiology that cannot be quantified by hemodynamic measurements alone. This demonstrated that 129Xe dynamic MRS and gas exchange MRI can be used in tandem to uniquely provide non-invasive assessment of both hemodynamics and gas-exchange impairment to aid in the differentiation and detection of PH.
For 129Xe MRI/MRS to be adopted into a clinical setting it is essential to understand the underlying measurement variability. Chapter 7 presents an assessment of the repeatability of the dynamic spectroscopy sequence and quantification methods by acquiring two dynamic spectroscopy acquisitions during a single MR study. We also use these paired scans to develop quantitative criteria to assess the scan quality for inclusion in dynamic analysis. Additionally, as 129Xe MRI/MRS is more broadly implemented it is imperative to have standards for day-to-day validation and for comparing performance at different 129Xe imaging centers. Therefore, Chapter 8 present our development of a thermally polarized xenon phantom assembly and associated imaging protocol to enable rapid quality‐assurance (QA) imaging.
The work in this thesis develops a robust 129Xe dynamic spectroscopy protocol for evaluating the temporal dynamics in the RBC resonance. In particular, the height of RBC amplitude oscillations is found to be sensitive to PH and can be used to differentiate between pre- and post-capillary forms. 129Xe dynamic spectroscopy and 129Xe gas exchange MRI can differentiate between diverse cardiopulmonary diseases and together provide a complete evaluation of pulmonary hemodynamics and gas exchange impairments. This research lays the groundwork for the use of 129Xe MRI/MRS in clinical practice to diagnose and monitor PH and transforms 129Xe MRI/MRS into a more comprehensive tool for investigating the pathogenesis of unexplained dyspnea.
Item Open Access On the Utility of 129Xe Gas Exchange Magnetic Resonance Imaging for Assessing, Classifying, and Preventing Fibrotic Lung Diseases(2021) Rankine, Leith JohnPulmonary fibrosis is the process of lung tissue becoming damaged and scarred, losing its elastic and diffusive properties needed for proper lung function. This change in tissue structure can make it difficult to draw in a breath (ventilation) and cause a decrease in the amount of oxygen and carbon dioxide that can transfer between the alveoli and blood vessels (gas exchange). Therefore, the most common symptom of progressive pulmonary fibrosis is shortness of breath, or dyspnea. Pulmonary fibrosis can be caused by environmental pollutants, treatment-related toxicity from a drug or therapy, or interstitial lung diseases.
Regardless of its origin, pulmonary fibrosis can have devastating outcomes for patients. For example, the median survival for patients with idiopathic pulmonary fibrosis (IPF), an interstitial lung disease of unknown origin, is historically less than 3 years. For patients with IPF, the path of clinical decline is often sporadic and plagued with acute exacerbations and hospitalizations. Idiopathic pulmonary fibrosis currently affects between 100,000-200,000 people in the United States alone, and over a million worldwide. Unfortunately, the tools currently available to classify disease severity, determine prognosis, and assess disease progression or treatment response are simply inadequate. Patients with IPF exhibit distinct and unpredictable clinical trajectories, and a tool with the ability to predict these trajectories could improve targeted interventions. One such set of tools, pulmonary function tests (PFTs) can measure global ventilation and gas exchange, but have high variability and no spatial information. Another, high resolution computed tomography (HRCT), provides a 3D image, but function must be inferred from tissue density or structure, which comes with a number of limitations. A new tool that can spatially resolve and quantify regional pulmonary function could be invaluable in improving the clinical management of IPF.
In addition to fibrotic lung diseases, such as IPF, pulmonary fibrosis may also transpire as a treatment-related toxicity. Over 100,000 people per year in the U.S. will receive thoracic radiation therapy (RT) as treatment for cancer, putting them at risk for radiation-induced lung injury (RILI). Approximately 5-25% of patients that receive conventional thoracic RT develop clinically significant symptomatic radiation pneumonitis (RP), the acute form of RILI, causing patients to experience dyspnea, persistent coughing, pain, and fever. Radiation pneumonitis can lead to chronic radiation pulmonary fibrosis (RPF), or even result in death for an estimated 1-2% of patients. Current methods to assess RILI and grade RP rely on a clinical diagnosis and patient- and physician-reported symptoms. This leads to large variability in toxicity grading for thoracic RT clinical trials, hampering the effort to design treatments that reduce side effects. Further, a recently proposed treatment planning technique, “functional avoidance”, was designed to preserve pulmonary function and reduce the incidence or severity of RP by minimizing radiation dose to areas with high pulmonary function. However, clinically available tools can only measure ventilation or perfusion, neither of which are a true representation of end-to-end pulmonary gas exchange, a fact that may be limiting the potential effectiveness of this technique. Once again, a tool that can spatially resolve and quantify regional pulmonary function could offer improvements to functional avoidance treatment planning and the prevention of RP. If such a tool was sensitive enough to detect radiation-induced changes in function, this could reduce the variability in the current guidelines for the toxicity grading of RP.
In this work, we investigated non-invasive hyperpolarized-129Xe gas exchange magnetic resonance imaging (MRI), which acquires 3D maps of lung ventilation, alveolar barrier uptake, and capillary red blood cell (RBC) transfer. This unique tool can quantify and spatially resolve the gas exchange capabilities of a human lung in a single 15-second breath-hold MRI acquisition. Currently limited to research studies, the clinical utility of this new technique is yet to be firmly established. Therefore, the objectives of this dissertation are to: 1) identify metrics from baseline 129Xe gas exchange MRI that are predictive of clinical outcomes in IPF; 2) quantify the extent to which ventilation and gas exchange distributions are spatially correlated, and the effect that this may have on functional avoidance treatment planning; and 3) establish a relationship between regional changes in gas exchange and local radiation therapy dose in RT patients.
First, we sought to identify 129Xe gas exchange MRI features in IPF patients, and establish 129Xe-based imaging metrics to be used for classifying patients into groups, as detailed in Chapter 3. As previously mentioned, subjects with IPF exhibit distinct clinical trajectories that are difficult to predict prospectively using currently available means. We acquired baseline 129Xe MRI for 12 newly diagnosed IPF patients, and prospectively grouped these subjects based on percentage-volumes of abnormal barrier uptake and RBC transfer, using thresholds we derived from 129Xe MRI of a healthy subject cohort (N=13). We then followed these subjects for 36 months and analyzed the clinically acquired PFT and outcome data. We examined the differences in clinical outcomes and temporal changes in PFTs based on these groupings. We also observed changes in 129Xe metrics over time for those subjects with serial time-point imaging. Our results indicated that 129Xe MRI characteristics appear to group disease in a way that was distinct from traditional clinical or radiographic approaches; in particular, excessive volumes of lung with elevated barrier uptake and reduced RBC transfer were associated with poor clinical outcome. This study provided preliminary evidence that IPF patients can be classified by 129Xe MRI, and that this classification may predict clinical outcomes. These results open the door for larger, prospective studies using 129Xe MRI in IPF. More generally, and perhaps most importantly, this work established 129Xe gas exchange MRI as a prognostic biomarker in fibrotic lung disease.
Our results from Chapter 3 established that, when accompanied by an increase in 129Xe MRI barrier signal, which is a hallmark characteristic of IPF, a reduction in RBC transfer signal is associated with clinical decline in IPF patients. Extending this work to fibrotic lung processes beyond IPF, we hypothesize that the RBC signal is an important marker for regional lung function, and preserving and protecting the volumes of lung exhibiting “healthy” RBC transfer could translate to preservation of overall pulmonary function. In RT treatment planning, the concept of avoiding excess radiation dose to highly functioning areas of lung is not new; “functional avoidance” (or “functional guidance”) has previously been proposed and implemented using both perfusion and ventilation imaging. In Chapter 4, however, we establish 129Xe gas exchange MRI as a unique marker of regional lung function compared to ventilation, which is the most popular functional avoidance planning technique due to its “free” derivation from the 4 dimensional (4D) CT acquired during the RT planning process. In this chapter, we examined the correlation of ventilation and RBC signals in a healthy volunteer cohort and a handful of thoracic RT patients. Our results indicated a weak-to-moderate correlation, which determined that the RBC signal was indeed spatially unique from the ventilation signal, but did not explore the extent to which this affects functional plans created using one or the other (ventilation or RBC gas exchange) for guidance. Therefore, Chapter 5 details our study of 11 patients that received RT for treatment of lung cancer in which we re-planned these patients’ clinically approved plans using ventilation and RBC gas exchange functional information. This study established a methodology for 129Xe gas exchange MRI functional avoidance planning, and the results showed that, for some RP-predictive metrics, gas exchange-guided planning produced significantly different dose distributions than ventilation-guided planning.
Finally, in Chapter 6 we focused on furthering our understanding of RILI in RT patients, and examined the sensitivity of 129Xe MRI for detecting pulmonary radiation damage. In this study, we quantified changes in regional gas exchange as a function of radiation dose for six patients undergoing conventional radiotherapy for lung cancer. As briefly described earlier, RT of tumors in or around the thorax is known to cause regional lung injury, with the acute injury phase symptoms of RP typically emerging 1-6 months after RT. Previous studies using SPECT have established that perfusion changes are dose-dependent and evident at 3-6 months after RT. Therefore, we acquired 129Xe MRI scans before RT and at 3- and 6-months after RT to evaluate the progression of the acute inflammatory phase of RILI, as it relates to changes in regional gas exchange. We co-registered the MRI data to the RT treatment planning data, to evaluate regional changes in ventilation, barrier uptake, and RBC transfer, as a function of delivered radiation dose. Our results indicated that the barrier uptake signal increased with radiation doses above 20 Gy, and that the magnitude of change was dose-dependent. This potentially confirms increased barrier uptake as a marker of regional inflammation. In addition, we observed that the RBC transfer signal decreased with radiation doses above 35 Gy, possibly quantifying a reduction in overall gas exchange properties of the tissue at these high doses. Our observations of this dose-dependent relationship are consistent with historic ventilation and perfusion data, and gives rise to the idea that 129Xe MRI may be a powerful tool in furthering understanding of the subclinical progression of RILI and potentially other causes of lung fibrosis.
Overall, we have demonstrated the potential of 129Xe-MRI gas exchange to 1) improve disease classification in IPF, 2) add unique functional information to the planning of thoracic radiation treatments, and 3) assess RT-associated subclinical changes in regional lung function. We have established a strong foundation for this non-invasive technology, enabling further development and validation of these MRI biomarkers in larger studies. The work presented herein marks the beginning of a journey to advance our understanding of fibrotic progression in IPF, RILI, and all other causes of pulmonary fibrosis.
Item Open Access Translational Imaging of Pulmonary Gas-Exchange Using Hyperpolarized 129Xe Magnetic Resonance Imaging(2014) Kaushik, Suryanarayanan SivaramThe diagnosis and treatment of pulmonary diseases still rely on pulmonary function tests that offer archaic or insensitive biomarkers of lung structure and function. As a consequence, chronic obstructive pulmonary disease is the third leading cause of death in the US, and the hospitalization costs for asthma are on the order of $29 Billion. Pulmonary diseases have created a large and unsustainable economic burden, and hence there is still a dire need for biomarkers that can predict early changes in lung function. The work presented in this thesis looks to address this very issue, by taking advantage of the unique properties of hyperpolarized (HP) 129Xe in conjunction with magnetic resonance imaging (MRI), to probe the fundamental function of the lung - gas-exchange.
While a bulk of the inhaled HP 129Xe stays in the alveolar spaces, its moderate solubility in the pulmonary tissues causes a small fraction of this xenon in the alveolar spaces to diffuse into the pulmonary barrier tissue and plasma, and further into the red blood cells (RBC). Additionally, when in either of these compartments, xenon experiences a unique shift in its resonance frequency from the gas-phase (barrier - 198 ppm, RBC - 217 ppm). These unique resonances are collectively called the dissolved-phase of xenon. As the pathway taken by xenon to reach the RBCs is identical to that of oxygen, this dissolved-phase offers a non-invasive probe to study the oxygen transfer pathway, and imaging its distribution, to first order, would give us an image of gas-exchange in the lung.
Gas-exchange is controlled by ventilation, perfusion, and lastly diffusion of gases across the capillary membrane. This process of diffusion is dictated by Fick's first law of diffusion, and hence the volume of gas taken up by the capillary blood stream depends on the alveolar surface area, and the interstitial thickness. Interestingly, changes in these factors can be measured using the resonances of xenon. Changes in the alveolar surface area brought on by diseases like emphysema will increase the diffusion of xenon within the alveolus. Thus, by using diffusion-weighted imaging of the gas-phase of 129Xe, which is the focus of chapter 3, one can extract the `apparent diffusion coefficient' (ADC) of xenon, that is sensitive to the changes in the alveolar surface area. The dissolved-phase on the other hand, while sensitive to the surface area, is also sensitive to subtle changes in the interstitial thickness. In fact, after the application of an RF pulse on the dissolved-phase, the recovery time for the xenon signal in the RBCs is significantly delayed by micron scale thickening of the interstitium. This delayed signal recovery can be used as a sensitive marker for diffusion impairment in the lung.
While direct imaging of the dissolved-phase was shown to be feasible, truly quantifying gas-exchange in the lung will require two additional technical advances - 1) As the gas-phase is the source magnetization for the dissolved-phase signal, it is imperative to acquire both the gas and dissolved-phase images in a single breath. The technical details of this achievement are discussed in chapters 4 and 5. 2) As the dissolved-phase consists of both the barrier and the RBC components, obtaining a fundamental image of gas-exchange in the lung will require creating independent images of 129Xe in the barrier and 129Xe in the RBCs. This goal first required creating a global metric of gas-transfer in the lung (chapter 6), which aided the implementation of the 1-point Dixon acquisition strategy to separate the components of the dissolved-phase. In conjunction with aim 1, it was finally possible to image all three resonances of 129Xe in a single breath (chapter 7). These 129Xe-RBC images were acquired in healthy volunteers and their efficacy was tested in subjects with idiopathic pulmonary fibrosis (IPF). These IPF subjects are known for their characteristic diffusion limitation, and in regions of fibrosis shown on their CT scans, the 129Xe-RBC images showed gas-transfer defects.
Hyperpolarized 129Xe MRI thus provides a non-invasive, ionizing radiation free method to probe ventilation, microstructural changes and most importantly, gas-exchange. These preliminary results indicate that xenon MRI has potential as a sensitive tool in therapeutic clinical trials to evaluate longitudinal changes in lung function.
Item Open Access Xenon and sevoflurane provide analgesia during labor and fetal brain protection in a perinatal rat model of hypoxia-ischemia.(PloS one, 2012-01) Yang, Ting; Zhuang, Lei; Rei Fidalgo, António M; Petrides, Evgenia; Terrando, Niccolo; Wu, Xinmin; Sanders, Robert D; Robertson, Nicola J; Johnson, Mark R; Maze, Mervyn; Ma, DaqingIt is not possible to identify all pregnancies at risk of neonatal hypoxic-ischemic encephalopathy (HIE). Many women use some form of analgesia during childbirth and some anesthetic agents have been shown to be neuroprotective when used as analgesics at subanesthetic concentrations. In this study we sought to understand the effects of two anesthetic agents with presumptive analgesic activity and known preconditioning-neuroprotective properties (sevoflurane or xenon), in reducing hypoxia-induced brain damage in a model of intrauterine perinatal asphyxia. The analgesic and neuroprotective effects at subanesthetic levels of sevoflurane (0.35%) or xenon (35%) were tested in a rat model of intrauterine perinatal asphyxia. Analgesic effects were measured by assessing maternal behavior and spinal cord dorsal horn neuronal activation using c-Fos. In separate experiments, intrauterine fetal asphyxia was induced four hours after gas exposure; on post-insult day 3 apoptotic cell death was measured by caspase-3 immunostaining in hippocampal neurons and correlated with the number of viable neurons on postnatal day (PND) 7. A separate cohort of pups was nurtured by a surrogate mother for 50 days when cognitive testing with Morris water maze was performed. Both anesthetic agents provided analgesia as reflected by a reduction in the number of stretching movements and decreased c-Fos expression in the dorsal horn of the spinal cord. Both agents also reduced the number of caspase-3 positive (apoptotic) neurons and increased cell viability in the hippocampus at PND7. These acute histological changes were mirrored by improved cognitive function measured remotely after birth on PND 50 compared to control group. Subanesthetic doses of sevoflurane or xenon provided both analgesia and neuroprotection in this model of intrauterine perinatal asphyxia. These data suggest that anesthetic agents with neuroprotective properties may be effective in preventing HIE and should be tested in clinical trials in the future.Item Open Access Xenon neuroprotection in experimental stroke: interactions with hypothermia and intracerebral hemorrhage.(Anesthesiology, 2012-12) Sheng, Siyuan P; Lei, Beilei; James, Michael L; Lascola, Christopher D; Venkatraman, Talaignair N; Jung, Jin Yong; Maze, Mervyn; Franks, Nicholas P; Pearlstein, Robert D; Sheng, Huaxin; Warner, David SBackground
Xenon has been proven to be neuroprotective in experimental brain injury. The authors hypothesized that xenon would improve outcome from focal cerebral ischemia with a delayed treatment onset and prolonged recovery interval.Methods
Rats were subjected to 70 min temporary focal ischemia. Ninety minutes later, rats were treated with 0, 15, 30, or 45% Xe for 20 h or 0 or 30% Xe for 8, 20, or 44 h. Outcome was measured after 7 days. In another experiment, after ischemia, rats were maintained at 37.5° or 36.0°C for 20 h with or without 30% Xe. Outcome was assessed 28 days later. Finally, mice were subjected to intracerebral hemorrhage with or without 30% Xe for 20 h. Brain water content, hematoma volume, rotarod function, and microglial activation were measured.Results
Cerebral infarct sizes (mean±SD) for 0, 15, 30, and 45% Xe were 212±27, 176±55, 160±32, and 198±54 mm, respectively (P=0.023). Neurologic scores (median±interquartile range) followed a similar pattern (P=0.002). Infarct size did not vary with treatment duration, but neurologic score improved (P=0.002) at all xenon exposure durations (8, 20, and 44 h). Postischemic treatment with either 30% Xe or subtherapeutic hypothermia (36°C) had no effect on 28-day outcome. Combination of these interventions provided long-term benefit. Xenon improved intracerebral hemorrhage outcome measures.Conclusion
Xenon improved focal ischemic outcome at 7, but not 28 days postischemia. Xenon combined with subtherapeutic hypothermia produced sustained recovery benefit. Xenon improved intracerebral hemorrhage outcome. Xenon may have potential for clinical stroke therapy under carefully defined conditions.