Browsing by Subject "Zebrafish"
Results Per Page
Sort Options
Item Open Access A Clonal Analysis of Zebrafish Heart Morphogenesis and Regeneration(2014) Gupta, VikasAs vertebrate embryos grow and develop into adults, their organs must acquire mass and mature tissue architecture to maintain proper homeostasis. While juvenile growth encompasses a significant portion of life, relatively little is known about how individual cells proliferate, with respect to one another, to orchestrate this final maturation. For its simplicity and ease of genetic manipulations, the teleost zebrafish (Danio rerio) was used to understand how the proliferative outputs of individual cells generate an organ from embryogenesis into adulthood.
To define the proliferative outputs of individual cells, a multicolor clonal labeling approach was taken that visualized a large number of cardiomyocyte clones within the zebrafish heart. This Brainbow technique utilizes Cre-loxP mediated recombination to assign cells upwards of ~90 unique genetic tags. These tags are comprised of the differential expression of 3 fluorescent proteins, which combine to give rise to spectrally distinct colors that represent these genetic tags. Tagging of individual cardiomyocytes was induced early in development, when the wall of the cardiac ventricle is a single myocyte thick. Single cell cardiomyocyte clones within this layer expanded laterally in a developmentally plastic manner into patches of variable shapes and sizes as animals grew into juveniles. As maturation continued into adulthood, a new lineage of cortical muscle appeared at the base of the ventricle and enveloped the ventricle in a wave of proliferation that fortified the wall to make it several myocytes thick. This outer cortical layer was formed from a small number (~8) of dominant cortical myocyte clones that originated from trabecular myocytes. These trabecular myocytes were found to gain access to the ventricular surface through rare breaches within the single cell thick ventricular wall, before proliferating over the surface of the ventricle.
These results demonstrated an unappreciated dynamic juvenile remodeling event that generated the adult ventricular wall. During adult zebrafish heart regeneration, the primary source of regenerating cardiomyocytes stems from this outer wall of muscle. Regenerating cardiomyocytes within this outer layer of muscle are specifically marked by the cardiac transcription factor gene gata4, which they continue to express as they proliferate into the wound area.
Using heart regeneration to guide investigation of juvenile cortical layer formation, we found that both processes shared similar molecular and tissue specific responses including expression and requirement of gata4. Additional markers suggested that juvenile hearts were under stress and that this stress could play a role to initiate cortical morphogenesis. Indeed, experimental injury or a physiologic increase in stress to juvenile hearts caused the ectopic appearance of cortical muscle, demonstrating that injury could trigger premature morphogenesis.
These studies detail the cardiomyocyte proliferative events that shape the heart and identify molecular parallels that exist between regeneration and cortical layer formation. They show that adult zebrafish heart regeneration utilizes an injury/stress responsive program that was first used to remodel the heart during juvenile growth.
Item Open Access A dual role for ErbB2 signaling in cardiac trabeculation.(Development, 2010-11) Liu, J; Bressan, M; Hassel, D; Huisken, J; Staudt, D; Kikuchi, K; Poss, KD; Mikawa, T; Stainier, DYCardiac trabeculation is a crucial morphogenetic process by which clusters of ventricular cardiomyocytes extrude and expand into the cardiac jelly to form sheet-like projections. Although it has been suggested that cardiac trabeculae enhance cardiac contractility and intra-ventricular conduction, their exact function in heart development has not been directly addressed. We found that in zebrafish erbb2 mutants, which we show completely lack cardiac trabeculae, cardiac function is significantly compromised, with mutant hearts exhibiting decreased fractional shortening and an immature conduction pattern. To begin to elucidate the cellular mechanisms of ErbB2 function in cardiac trabeculation, we analyzed erbb2 mutant hearts more closely and found that loss of ErbB2 activity resulted in a complete absence of cardiomyocyte proliferation during trabeculation stages. In addition, based on data obtained from proliferation, lineage tracing and transplantation studies, we propose that cardiac trabeculation is initiated by directional cardiomyocyte migration rather than oriented cell division, and that ErbB2 cell-autonomously regulates this process.Item Open Access Adult exposure to insecticides causes persistent behavioral and neurochemical alterations in zebrafish.(Neurotoxicology and teratology, 2020-03) Hawkey, Andrew B; Glazer, Lilah; Dean, Cassandra; Wells, Corinne N; Odamah, Kathryn-Ann; Slotkin, Theodore A; Seidler, Frederic J; Levin, Edward DFarmers are often chronically exposed to insecticides, which may present health risks including increased risk of neurobehavioral impairment during adulthood and across aging. Experimental animal studies complement epidemiological studies to help determine the cause-and-effect relationship between chronic adult insecticide exposure and behavioral dysfunction. With the zebrafish model, we examined short and long-term neurobehavioral effects of exposure to either an organochlorine insecticide, dichlorodiphenyltrichloroethane (DDT) or an organophosphate insecticide chlorpyrifos (CPF). Adult fish were exposed continuously for either two or 5 weeks (10-30 nM DDT, 0.3-3 μM CPF), with short- and long-term effects assessed at 1-week post-exposure and at 14 months of age respectively. The behavioral test battery included tests of locomotor activity, tap startle, social behavior, anxiety, predator avoidance and learning. Long-term effects on neurochemical indices of cholinergic function were also assessed. Two weeks of DDT exposure had only slight effects on locomotor activity, while a longer five-week exposure led to hypoactivity and increased anxiety-like diving responses and predator avoidance at 1-week post-exposure. When tested at 14 months of age, these fish showed hypoactivity and increased startle responses. Cholinergic function was not found to be significantly altered by DDT. The two-week CPF exposure led to reductions in anxiety-like diving and increases in shoaling responses at the 1-week time point, but these effects did not persist through 14 months of age. Nevertheless, there were persistent decrements in cholinergic presynaptic activity. A five-week CPF exposure led to long-term effects including locomotor hyperactivity and impaired predator avoidance at 14 months of age, although no effects were apparent at the 1-week time point. These studies documented neurobehavioral effects of adult exposure to chronic doses of either organochlorine or organophosphate pesticides that can be characterized in zebrafish. Zebrafish provide a low-cost model that has a variety of advantages for mechanistic studies and may be used to expand our understanding of neurobehavioral toxicity in adulthood, including the potential for such toxicity to influence behavior and development during aging.Item Open Access An enzyme that inactivates the inflammatory mediator leukotriene b4 restricts mycobacterial infection.(PLoS One, 2013) Tobin, David M; Roca, Francisco J; Ray, John P; Ko, Dennis C; Ramakrishnan, LalitaWhile tuberculosis susceptibility has historically been ascribed to failed inflammation, it is now known that an excess of leukotriene A4 hydrolase (LTA4H), which catalyzes the final step in leukotriene B4 (LTB4) synthesis, produces a hyperinflammatory state and tuberculosis susceptibility. Here we show that the LTB4-inactivating enzyme leukotriene B4 dehydrogenase/prostaglandin reductase 1 (LTB4DH/PTGR1) restricts inflammation and independently confers resistance to tuberculous infection. LTB4DH overexpression counters the susceptibility resulting from LTA4H excess while ltb4dh-deficient animals can be rescued pharmacologically by LTB4 receptor antagonists. These data place LTB4DH as a key modulator of TB susceptibility and suggest new tuberculosis therapeutic strategies.Item Open Access Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion.(eLife, 2016-03-22) Dunn, Timothy W; Mu, Yu; Narayan, Sujatha; Randlett, Owen; Naumann, Eva A; Naumann, Eva A; Yang, Chao-Tsung; Schier, Alexander F; Schier, Alexander F; Freeman, Jeremy; Engert, Florian; Ahrens, Misha BIn the absence of salient sensory cues to guide behavior, animals must still execute sequences of motor actions in order to forage and explore. How such successive motor actions are coordinated to form global locomotion trajectories is unknown. We mapped the structure of larval zebrafish swim trajectories in homogeneous environments and found that trajectories were characterized by alternating sequences of repeated turns to the left and to the right. Using whole-brain light-sheet imaging, we identified activity relating to the behavior in specific neural populations that we termed the anterior rhombencephalic turning region (ARTR). ARTR perturbations biased swim direction and reduced the dependence of turn direction on turn history, indicating that the ARTR is part of a network generating the temporal correlations in turn direction. We also find suggestive evidence for ARTR mutual inhibition and ARTR projections to premotor neurons. Finally, simulations suggest the observed turn sequences may underlie efficient exploration of local environments.Item Open Access Cell Wall Lipids Promoting Host Angiogenesis During Mycobacterial Infection(2018) Walton, Eric MichaelMycobacterial infection leads to the formation of characteristic immune cell aggregates called granulomas. In humans and animal models, tuberculous granuloma formation is accompanied by dramatic remodeling of host vasculature which ultimately benefits the infecting mycobacteria, suggesting the bacteria may actively drive this host process. First, we sought to identify bacterial factors that promote granuloma vascularization. Using Mycobacterium marinum transposon mutants in a zebrafish infection model, we revealed the enzyme Proximal Cyclopropane Synthase of alpha-Mycolates (PcaA) as an important bacterial determinant of host angiogenesis. We found that PcaA-modified trehalose dimycolate, an abundant glycolipid in the mycobacterial cell wall, drives activation of host VEGF signaling and subsequent granuloma vascularization. To facilitate our continuing investigation of granuloma dynamics, we next sought to expand and improve upon the transgenic tools for studying macrophages in the zebrafish model. I describe two such tools: i) the macrophage-specific zebrafish mfap4 promoter, which allows long-term in vivo visualization and manipulation of macrophages during mycobacterial infection, and ii) the first zebrafish transgenic line with constitutive, ubiquitous Cas9 expression, as well as a transgene design capable of generating sgRNAs using macrophage-specific promoters. These tools allow CRISPR/Cas9 gene editing in vivo in the zebrafish in a macrophage-restricted manner.
Item Open Access Cellular and Molecular Mechanisms of Cardiac Chamber Maturation in Zebrafish(2018) Foglia, MatthewThe formation of the heart is a critical part of development that, if defective, can lead to congenital malformations incompatible with life. An improved understanding of the cellular and molecular processes that build the heart is essential to elucidate the causes of congenital defects and to design appropriate therapies. Relatively little is known about how the cardiac chambers adopt distinct forms to follow their specialized functions. Here, I have used a multicolor genetic labeling system to trace the progeny of zebrafish atrial cardiomyocytes as they expand to form the mature atrial myocardium. By comparing the observed cellular dynamics to those previously mapped in the ventricle, I identified characteristics of chamber development, including wall thickening, wall composition, and internal muscle formation, that contribute to the structural divergence of the chambers. As coronary vessel formation is one such chamber-specific morphogenetic process, I then explored the effect of a chamber-specific growth factor on cardiac development and homeostasis. Using a transgenic reporter and an inducible overexpression tools, I found ectopic expression of this growth factor stimulates cardiomyocyte proliferation. However, overexpression also blocks regeneration, possibly due to the abolition of an endogenous gradient localized to the site of injury. These findings not only provide new details for how the cardiac chambers form, but also demonstrate how understanding developmental phenomena can provide insights into important concepts of regenerative medicine.
Item Open Access Cellular Mechanisms Regulating Single Lumen Formation in the Zebrafish Gut(2014) Lento, Ashley AlversThe formation of a single lumen during tubulogenesis is crucial for the development and function of many organs. Although 3D cell culture models have identified molecular mechanisms controlling lumen formation in vitro, their function during vertebrate organogenesis is poorly understood. In this work we used the zebrafish gut as a model to investigate single lumen formation during tubulogenesis. Previous work has shown that multiple small lumens enlarge through fluid accumulation and coalesce into a single lumen. However, since lumen formation occurs in the absence of apoptosis, other cellular processes are necessary to facilitate single lumen formation.
Using light sheet microscopy and genetic approaches we identified a distinct intermediate stage in lumen formation, characterized by two adjacent un-fused lumens. These lumens are separated by cell contacts that contain basolateral adhesion proteins. We observed that lumens arise independently from each other along the length of the gut and do not share a continuous apical surface. Resolution of this intermediate phenotype into a single, continuous lumen requires the remodeling of basolateral contacts between adjacent lumens and subsequent lumen fusion.
Furthermore, we provide insight into the genetic mechanisms regulating lumen formation through the analysis of the Hedgehog pathway. We show that lumen resolution, but not lumen opening, is impaired in smoothened (smo) mutants, indicating that fluid-driven lumen enlargement and resolution are two distinct processes. We also show that smo mutants exhibit perturbations in the Rab11 trafficking pathway, which led us to demonstrate that Rab11-mediated recycling, but not degradation, is necessary for single lumen formation. Taken together, this work demonstrates that lumen resolution is a distinct genetically-controlled process, requiring cellular rearrangement and lumen fusion events, to create a single, continuous lumen in the zebrafish gut.
Item Open Access Characterization of the Actin Nucleator Cordon-bleu in Zebrafish(2010) Ravanelli, Andrew MichaelThe means by which cells, tissues, and organisms undergo morphogenesis are variable and highly regulated, and the mechanisms that govern cellular changes in response to signaling cues are poorly understood. This study seeks to address the role of a newly characterized protein in zebrafish in translating signaling cues into physical changes within a cell.
The Cordon–bleu (Cobl) gene is widely conserved in vertebrates, with developmentally regulated axial and epithelial expression in mouse and chick embryos. In vitro, Cobl can bind monomeric actin and nucleate formation of unbranched actin filaments, while in cultured cells it can modulate the actin cytoskeleton. However, an essential role for Cobl in vivo has yet to be determined. We have identified the zebrafish cobl ortholog and have used zebrafish as a model to assess the requirements for Cobl in embryogenesis. We find that cobl shows enriched expression in ciliated epithelial tissues during zebrafish organogenesis. The utilization of antibodies developed against Cobl shows that the protein is concentrated along the apical domain of ciliated cells, in close proximity to the apical actin cap.
Reduction of cobl by antisense morpholinos reveals an essential role in embryonic morphogenesis and organ development. A requirement for Cobl was shown for the proper function of various and ciliated epithelial organs. Cobl appears to direct the elongation of motile cilia in organs such as Kupffer’s vesicle and the pronephros. In Kupffer’s vesicle, the reduction in Cobl coincides with a reduction in the amount of apical F-actin. Additionally, Cobl may play a role during gastrulation cell movements and convergence and extension morphogenesis during early embryonic development. Thus, Cobl may represent a molecular activity that couples developmental patterning signals with local intracellular cytoskeletal dynamics to support elongation of motile cilia and tissue morphogenesis.
Item Open Access Chemical and Genetic Modulation of the Host Immune Response to Mycobacterial Infection(2018) Matty, Molly AnastasiaMycobacterium tuberculosis (Mtb) is the causative agent of the disease tuberculosis, which kills more people worldwide than any other infectious disease. In 2017, nearly 2 million people died of tuberculosis. Despite the advent of antibiotics targeting Mtb, the global spread of tuberculosis continues. The development of antibiotic resistance within the bacteria has further complicated the already long and difficult course of treatment for the disease. New therapeutics are necessary to combat tuberculosis. A novel treatment strategy is the use of host-directed therapies, which provide an orthogonal approach to killing intracellular pathogens. Rather than directly targeting bacterial pathways, which may lead to the development of mutations that result in resistance to the drug, host directed therapies (HDTs) target the host immune response to the disease. To uncover these host directed therapies, we have utilized the zebrafish-Mycobacterium marinum model system. Using zebrafish infected with their natural pathogen, Mycobacterium marinum, a close genetic relative to Mtb, we show that we can enhance the ability of the host immune response to kill intracellular bacteria.
In Chapter 1, I introduce tuberculosis as a disease and discuss the past, present and future of treating the disease. I discuss potential host targets for immune modulating therapies, including autophagy, inflammation, and inflammasomes. I highlight the role of calcium signaling in immune cells, specifically neutrophils and macrophages. I briefly describe zebrafish as a model system, emphasizing their use to study immune responses and host-pathogen interactions. In Chapter 2, we show calcium is required for immune cell activity and motility in neutrophils. Calcium is a signal that leads neutrophils not only to wound sites but also to sites of infection and inflammation. We then enhance calcium signaling through potentiation of the membrane channel P2RX7 with the small molecule clemastine, an FDA-approved over-the-counter antihistamine in Chapter 3. We show that clemastine treatment reduces bacterial burden in a P2RX7 –dependent manner in zebrafish larvae. P2RX7 activation leads to assembly of inflammasomes in macrophages, a key immune cell of mycobacterial infection. In human mycobacterial disease, many of the bacteria are contained within structures called granulomas, in which host macrophages and other immune cells have formed a cuff around the bacteria, creating a space that is recalcitrant to treatment with frontline antibiotics. Clemastine is effective in these established infection structures, indicating that it may be a feasible strategy to treat human tuberculosis. We discuss how mycobacteria evade the host immune response and demonstrate how a small molecule can overcome these evasion strategies for improved host outcome.
Item Open Access Chemical and Microbial Regulation of Epithelial Homeostasis and Innate Immunity(2019) Espenschied, Scott TedmundThe intestine is a multifunctional organ that must perform dichotomous roles in order to maintain health. While it is the primary site of absorption of dietary nutrients, it must also serve as a barrier to both the multitude of microorganisms which reside in the intestinal lumen (the microbiota) and foreign compounds (xenobiotics) which can be toxic to the host. Moreover, the microbiota are required for normal physiology, regulating immunological development, metabolism and behavior. Understanding how the intestine maintains homeostasis and responds to insult in the face of a chemically and microbially complex and dynamic environment is not only a fundamental question of biology, but has important implications for human health. We used zebrafish in order to better understand how the intestine responds to xenobiotics (Chapter 2) and transduces signals from the microbiota to the immune system (Chapter 3).
In Chapter 1, I introduce the complex and reciprocal interactions between xenobiotics, the microbiota, and the host. I highlight examples whereby the microbiota modulates the activity and toxicity of pharmaceuticals, with relevance to diseases of different organ systems. I also describe mechanisms by which the intestine responds to xenobiotic toxicity, and finally advocate for the use of novel model organisms to improve our understanding of these complex interactions.
In Chapter 2, I present our work using the NSAID Glafenine to explore how the intestine responds to xenobiotic challenge. Using transgenic zebrafish and high resolution in vivo imaging, we demonstrate loss epithelial cells in a live animal following xenobiotic challenge. Moreover, Glafenine causes intestinal inflammation, which is potentiated by microbial dysbiosis. We also show that Glafenine can directly alter microbiota composition. Glafenine treatment resulted in activation of the unfolded protein response (UPR), and while pharmacological inhibition of the UPR sensor Ire1a suppressed Glafenine-induced IEC loss, this was associated with increased inflammation and mortality. Ultimately, we demonstrate that Glafenine-induced intestinal toxicity is likely due to off-target inhibition of multidrug resistance (MDR) efflux pumps, as other MDR inhibitors were able to elicit similar phenotypes. Collectively, our findings revealed that (i) MDRs serve an evolutionarily conserved role in maintenance of intestinal homeostasis and (ii) IEC delamination is a protective mechanism which serves to limit inflammation and promote animal survival.
While studies in gnotobiotic mice and zebrafish have demonstrated that the microbiota are required for normal development of the innate immune system, the underlying host and microbial signals which mediate these effects remain largely unknown. We had previously demonstrated that motility of gut commensal bacteria in zebrafish was important for successful colonization of some strains and stimulation of the normal host innate immune response to colonization. In Chapter 3, we describe how microbiota colonization is associated with changes in the PMN transcriptome in addition to promoting systemic abundance and distribution of myeloid cells. Intriguingly, the only pattern recognition receptors found to be differentially expressed in PMNs were the Flagellin receptors tlr5a and tlr5b. Colonization of zebrafish larvae with bacteria lacking Flagellin resulted in attenuated PMN transcriptional activation compared to larvae colonized with isogenic wild type (WT) bacteria. We subsequently demonstrated that direct exposure to purified Flagellin can potently induce transcriptional activation in zebrafish PMNs. These findings identify how the presence of the microbe associated molecular pattern (MAMP) Flagellin serves as a bacterial cue from the microbiota which promotes PMN activation. In Chapter 4, I offer perspectives as to how the Glafenine-zebrafish model system can be used to more deeply investigate host-microbiota-xenobiotic interactions, and genetic, biochemical and computational analyses can help delineate mechanisms by which MDR efflux pumps function in the maintenance of intestinal homeostasis. Moreover, I propose the use of bacterial screens as well as inflammatory and infectious challenge assays in order to better understand the functional outcomes of PMN transcriptional activation elicited by microbiota-derived signals such as Flagellin.
Item Open Access CLARITY and PACT-based imaging of adult zebrafish and mouse for whole-animal analysis of infections.(Dis Model Mech, 2015-12) Cronan, Mark R; Rosenberg, Allison F; Oehlers, Stefan H; Saelens, Joseph W; Sisk, Dana M; Jurcic Smith, Kristen L; Lee, Sunhee; Tobin, David MVisualization of infection and the associated host response has been challenging in adult vertebrates. Owing to their transparency, zebrafish larvae have been used to directly observe infection in vivo; however, such larvae have not yet developed a functional adaptive immune system. Cells involved in adaptive immunity mature later and have therefore been difficult to access optically in intact animals. Thus, the study of many aspects of vertebrate infection requires dissection of adult organs or ex vivo isolation of immune cells. Recently, CLARITY and PACT (passive clarity technique) methodologies have enabled clearing and direct visualization of dissected organs. Here, we show that these techniques can be applied to image host-pathogen interactions directly in whole animals. CLARITY and PACT-based clearing of whole adult zebrafish and Mycobacterium tuberculosis-infected mouse lungs enables imaging of mycobacterial granulomas deep within tissue to a depth of more than 1 mm. Using established transgenic lines, we were able to image normal and pathogenic structures and their surrounding host context at high resolution. We identified the three-dimensional organization of granuloma-associated angiogenesis, an important feature of mycobacterial infection, and characterized the induction of the cytokine tumor necrosis factor (TNF) within the granuloma using an established fluorescent reporter line. We observed heterogeneity in TNF induction within granuloma macrophages, consistent with an evolving view of the tuberculous granuloma as a non-uniform, heterogeneous structure. Broad application of this technique will enable new understanding of host-pathogen interactions in situ.Item Open Access Clonal Analysis of the Zebrafish Fin Regeneration Blastema(2016) Tornini, Valerie AngelaRegeneration is a remarkable feat of developmental regrowth and patterning. The blastema is a mass of progenitor cells that enables complete regeneration of amputated salamander limbs or fish fins. Despite years of study, methodologies to identify and track blastemal cell progenies have been deficient, restricting our understanding of appendage regeneration at a cellular and molecular level. To bridge this knowledge gap, gene expression analysis, the generation of transgenic and mutant zebrafish, qualitative and quantitative analyses, morphological measurements, and chemical treatments were used to assess molecular and cellular processes involved in fin regeneration. Two main findings arose from these methods. The first provides evidence that connective tissue progenitors are rapidly organized into a scalable blueprint of lost structures, and that amputation stimulates resident cells to reset proximodistal positional information. The second identifies a fibroblast subpopulation near uninjured fin joints that contributes to the blastemal progenitor population. These findings reveal insights on cellular and molecular mechanisms of appendage regeneration and provide a basis for work exploring how cells in an adult vertebrate bone appendage coordinately rebuild a new structure.
Item Embargo Connecting Environmental Exposures to Toxicology: Exposure studies using Silicon Wristbands and Whole Model Organisms(2024-04-26) Shahid, SakinaSilicone wristbands have emerged as passive sampling tools to monitor environmental contaminant exposures. They work by mimicking the skin, where SVOCs (semi volatile organic compounds) and VOCs (volatile organic compounds) can sorb onto the surface of the wristband and accumulate over time, providing time aggregated measures of chemical burden especially by dermal and inhalation routes of exposure. They are non-invasive compared to traditional techniques used to assess exposure, such as urine and serum collection, and relatively easy to transport and store, allowing for more participation. My research introduces an approach using zebrafish (Danio Rerio) to investigate biological responses to wristband extracts, focusing on neurobehavior as an endpoint. Neurobehavior is evaluated using a light/dark assay, wherein larvae respond to light and dark stimuli and deviation from the expected response to these stimuli is interpreted as indicative of potential developmental issues. After developing a protocol, I applied this methodology to explore the toxicity of chemicals captured on wristbands from a cohort based in a farming community at high risk of exposure to agrochemicals in Sri Lanka. The wristbands were worn for 7 days during a non farming season and captured varying exposures to chemical classes such as PAHs, Phthalates, Flame Retardants and Pesticides. Upon analyzing the total distance zebrafish swam in light and dark conditions, a Dunnet’s post hoc test revealed that zebrafish behavior in 7 out of 10 wristbands in the farmer group and 8 out of 10 wristbands in the non farmer group was statistically significantly different compared to the field blank. Most groups were showing hyperactivity in terms of the total distance traveled compared to the field blank, with one wristband exposure group showing hypoactivity. This was the first study to utilize wristband extracts for exposures in zebrafish, helping bridge the gap between exposure science and mixtures toxicology.Item Open Access CPAG: software for leveraging pleiotropy in GWAS to reveal similarity between human traits links plasma fatty acids and intestinal inflammation.(Genome Biol, 2015-09-15) Wang, L; Oehlers, SH; Espenschied, ST; Rawls, JF; Tobin, DM; Ko, DCMeta-analyses of genome-wide association studies (GWAS) have demonstrated that the same genetic variants can be associated with multiple diseases and other complex traits. We present software called CPAG (Cross-Phenotype Analysis of GWAS) to look for similarities between 700 traits, build trees with informative clusters, and highlight underlying pathways. Clusters are consistent with pre-defined groups and literature-based validation but also reveal novel connections. We report similarity between plasma palmitoleic acid and Crohn's disease and find that specific fatty acids exacerbate enterocolitis in zebrafish. CPAG will become increasingly powerful as more genetic variants are uncovered, leading to a deeper understanding of complex traits. CPAG is freely available at www.sourceforge.net/projects/CPAG/.Item Open Access Developmental exposure of zebrafish to neonicotinoid pesticides: Long-term effects on neurobehavioral function.(Neurotoxicology, 2023-05) Hawkey, Andrew B; Unal, Dilanaz; Holloway, Zade R; Levin, Edward DNeonicotinoid compounds are commonly used insecticides which have become increasingly used as replacements of older generations of insecticides, such as organophosphates. Given the established neurotoxicity of cholinergic toxicants, developmental neurotoxicity studies are needed to identify in vertebrate species the potential toxicity of these insecticides which act on nicotinic cholinergic receptors. Previously, developmental exposure to a neonicotinoid insecticide imidacloprid was shown to cause persisting neurobehavioral toxicity in zebrafish. The current study evaluated neurobehavioral effects of embryonic exposure to two other neonicotinoid insecticides, clothianidin (1-100 µM) and dinotefuran (1-100 µM) in zebrafish (5-120 h post-fertilization), concentrations below the threshold for increased lethality and overt dysmorphogenesis. Neurobehavioral tests were conducted at larval (6 days), adolescent (10 weeks) and adult (8 months) ages. Both compounds caused short-term behavioral effects on larval motility, although these effects were distinct from one another. At a lower concentration (1 µM) clothianidin increased dark-induced locomotor stimulation the second time the lights turned off, while a higher concentration (100 µM) reduced activity in the dark at its second presentation. By contrast, dinotefuran (10-100 µM) caused a general decrease in locomotion. Specific longer-term neurobehavioral toxicity after early developmental exposure was also seen. clothianidin (100 µM) reduced locomotor activity in the novel tank in adolescence and adulthood, as well as reduced baseline activity in the tap startle test (1-100 µM) and reduced activity early (1-10 µM) or throughout the predator avoidance test session (100 µM). In addition to locomotor effects, clothianidin altered the diving response in a dose-, age- and time-block-dependent manner (1 µM, 100 µM), causing fish to remain further away from a fast predator cue (100 µM) relative to controls. Dinotefuran produced comparatively fewer effects, increasing the diving response in adulthood (10 µM), but not adolescence, and suppressing initial locomotor activity in the predator avoidance test (1-10 µM). These data indicate that neonicotinoid insecticides may carry some of the same risks for vertebrates posed by other classes of insecticides, and that these adverse behavioral consequences of early developmental exposure are evident well into adulthood.Item Open Access Developmental exposure of zebrafish to vitamin D receptor acting drugs and environmental toxicants disrupts behavioral function.(Neurotoxicology and teratology, 2020-09) Oliveri, Anthony N; Glazer, Lilah; Mahapatra, Debabrata; Kullman, Seth W; Levin, Edward DVitamin D receptor (VDR) signaling is important for optimal neurobehavioral development. Disruption of VDR signaling by environmental toxicants during early development might contribute to the etiology of behavioral dysfunction. In the current set of studies, we examined ten compounds known to affect VDR function in vitro for neurobehavioral effects in vivo in zebrafish. Zebrafish embryos were exposed to concentrations of the compounds in their water during the first 5 days post-fertilization. On day 5, the embryos were tested in an alternating light-dark locomotor assay using a computerized video tracking system. We found that most of the compounds produced significant changes in locomotor behavior in exposed zebrafish larvae, although the direction of the effect (i.e., hypo- or hyperactivity) and the sensitivity of the effect to changes in illumination condition varied across the compounds. The nature of the behavioral effects generally corresponded to the effects these compounds have been shown to exert on VDR. These studies lay a foundation for further investigation to determine whether behavioral dysfunction persists into adulthood and if so which behavioral functions are affected. Zebrafish can be useful for screening compounds identified in high throughput in vitro assays to provide an initial test for how those compounds would affect construction and behavioral function of a complex nervous system, helping to bridge the gap between in vitro neurotoxicity assays and mammalian models for risk assessment in humans.Item Open Access Developmental exposure to an organophosphate flame retardant alters later behavioral responses to dopamine antagonism in zebrafish larvae.(Neurotoxicology and teratology, 2018-05) Oliveri, Anthony N; Ortiz, Erica; Levin, Edward DHuman exposure to organophosphate flame retardants (OPFRs) is widespread, including pregnant women and young children with whom developmental neurotoxic risk is a concern. Given similarities of OPFRs to organophosphate (OP) pesticides, research into the possible neurotoxic impacts of developmental OPFR exposure has been growing. Building upon research implicating exposure to OP pesticides in dopaminergic (DA) dysfunction, we exposed developing zebrafish to the OPFR tris(1,3-dichloroisopropyl) phosphate (TDCIPP), during the first 5 days following fertilization. On day 6, larvae were challenged with acute administration of dopamine D1 and D2 receptor antagonists and then tested in a light-dark locomotor assay. We found that both developmental TDCIPP exposure and acute dopamine D1 and D2 antagonism decreased locomotor activity separately. The OPFR and DA effects were not additive; rather, TDCIPP blunted further D1 and D2 antagonist-induced decreases in activity. Our results suggest that TDCIPP exposure may be disrupting dopamine signaling. These findings support further research on the effects of OPFR exposure on the normal neurodevelopment of DA systems, whether these results might persist into adulthood, and whether they interact with OPFR effects on other neurotransmitter systems in producing the developmental neurobehavioral toxicity.Item Open Access Developmental Exposure to Low Concentrations of Organophosphate Flame Retardants Causes Life-Long Behavioral Alterations in Zebrafish.(Toxicological sciences : an official journal of the Society of Toxicology, 2018-10) Glazer, Lilah; Hawkey, Andrew B; Wells, Corinne N; Drastal, Meghan; Odamah, Kathryn-Ann; Behl, Mamta; Levin, Edward DAs the older class of brominated flame retardants (BFRs) are phased out of commercial use because of findings of neurotoxicity with developmental exposure, a newer class of flame retardants have been introduced, the organophosphate flame retardants (OPFRs). Presently, little is known about the potential for developmental neurotoxicity or the behavioral consequences of OPFR exposure. Our aim was to characterize the life-long neurobehavioral effects of 4 widely used OPFRs using the zebrafish model. Zebrafish embryos were exposed to 0.1% DMSO (vehicle control); or one of the following treatments; isopropylated phenyl phosphate (IPP) (0.01, 0.03, 0.1, 0.3 µM); butylphenyl diphenyl phosphate (BPDP) (0.003, 0.03, 0.3, 3 µM); 2-ethylhexyl diphenyl phosphate (EHDP) (0.03, 0.3, 1 µM); isodecyl diphenyl phosphate (IDDP) (0.1, 0.3, 1, 10 µM) from 0- to 5-days postfertilization. On Day 6, the larvae were tested for motility under alternating dark and light conditions. Finally, at 5-7 months of age the exposed fish and controls were tested on a battery of behavioral tests to assess emotional function, sensorimotor response, social interaction and predator evasion. These tests showed chemical-specific short-term effects of altered motility in larvae in all of the tested compounds, and long-term impairment of anxiety-related behavior in adults following IPP, BPDP, or EHDP exposures. Our results show that OPFRs may not be a safe alternative to the phased-out BFRs and may cause behavioral impacts throughout the lifespan. Further research should evaluate the risk to mammalian experimental models and humans.Item Open Access Developmental exposure to pesticides that disrupt retinoic acid signaling causes persistent retinoid and behavioral dysfunction in zebrafish.(Toxicological sciences : an official journal of the Society of Toxicology, 2024-03) Hawkey, Andrew B; Shekey, Nathan; Dean, Cassandra; Asrat, Helina; Koburov, Reese; Holloway, Zade R; Kullman, Seth W; Levin, Edward DEarly developmental exposure to environmental toxicants may play a role in the risk for developing autism. A variety of pesticides have direct effects on retinoic acid (RA) signaling and as RA signaling has important roles in neurodevelopment, such compounds may cause developmental neurotoxicity through an overlapping adverse outcome pathway. It is hypothesized that a pesticide's embryonic effects on retinoid function may correspond with neurobehavioral disruption later in development. In the current studies, we determined the effects of RA-acting pesticides on neurobehavioral development in zebrafish. Buprofezin and imazalil caused generalized hypoactivity in the larval motility test, whereas chlorothalonil and endosulfan I led to selective hypoactivity and hyperactivity, respectively. With buprofezin, chlorothalonil, and imazalil, hypoactivity and/or novel anxiety-like behaviors persisted in adulthood and buprofezin additionally decreased social attraction responses in adulthood. Endosulfan I did not produce significant adult behavioral effects. Using qPCR analyses of adult brain tissue, we observed treatment-induced alterations in RA synthesis or catabolic genes, indicating persistent changes in RA homeostasis. These changes were compound-specific, with respect to expression directionality, and potential patterns of homeostatic disruption. Results suggest the likely persistence of disruptions in RA signaling well into adulthood and may represent compensatory mechanisms following early life stage exposures. This study demonstrates that early developmental exposure to environmental toxicants that interfere with RA signaling causes short as well as long-term behavioral disruption in a well-established zebrafish behavioral model and expand upon the meaning of the RA adverse outcome pathway, indicating that observed effects likely correspond with the nature of underlying homeostatic effects.