Browsing by Subject "adult spine deformity"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Fractional Curve in Adult Spinal Deformity: Is it a Driver of or a Compensation for Coronal Malalignment?(Clinical Spine Surgery, 2021-06-01) Plais, Nicolas; Bao, Hongda; Lafage, Renaud; Kim, Han Jo; Gupta, Munish; Smith, Justin S; Shaffrey, Christopher; Mundis, Gregory; Burton, Douglas; Ames, Christopher; Klineberg, Eric; Bess, Shay; Hostin, Richard A; Schwab, Frank; Lafage, Virginie; International Spine Study Group, Littleton, COStudy Design: This was a retrospective review of the multicenter adult spine deformity database. Objective: The objective of this study was to investigate the role of the fractional curve (FC) on global coronal malalignment. Summary of Background Data: Despite being very common, the role of the coronal FC as either a driver or compensation for global coronal malalignment is not well documented Materials and Methods: Patients with the following characteristics were extracted from a prospective multicenter database: lumbar/thoracolumbar (TL) major coronal curve >15 degrees, apex at T11-L3, lower end vertebra at L3 or L4, above 45 years old, and FC >5 degrees. In addition to the classic radiographic parameters, baseline analysis included Cobb angle, pelvic obliquity (PO), fractional ratio (fractional Cobb/main Cobb), the sum of PO and FC, as well as the coronal Qiu classification. Curves distribution (TL vs. FC) were compared across the 3 Qui types, and the role of the FC was investigated. Results: A total of 404 patients (63 y old, 83.3% female) were included: 43 patients were classified as type B, 120 as type C, and 241 were coronally balanced (type A). Compared with the balanced patients, type C patients had similar major TL Cobb angles but significantly larger fractional Cobb angles (17.5 vs. 22.3 degrees, P<0.001). By opposition, type B patients had significantly larger major TL Cobb angles (49 vs. 41 degrees, P=0.001) but smaller fractional Cobb angles (P<0.001). PO>5 degrees in the same direction as FC was more common in type B patients (20%) than in type C patients (7.5%), which suggests the preferential role of pelvic compensation. Conclusions: Our findings challenge the idea that FC is only a compensatory curve below a main lumbar or TL curve. In type B patients, FC acts as a compensation mechanism but fails to maintain coronal alignment despite the presence of PO. In type C patients, however, the lumbosacral FC acts as a primary driver of coronal malalignment. Level of Evidence: Level III.Item Open Access The Effect of Anaemia on Intra-operative Neuromonitoring Following Correction of Large Scoliosis Curves: Two Case Reports.(Cureus, 2024-04) Rocos, Brett; Wong, Ian H; Jentzsch, Thorsten; Strantzas, Samuel; Lewis, Stephen JThe correction of anemia is important in reversing significant intraoperative bilateral motor-evoked potential (MEP) loss following rod placement for correction of large scoliosis curves. This article presents a retrospective review of intraoperative neuromonitoring (IONM) data, anesthesia records, and medical charts of two patients with significant bilateral MEP changes associated with posterior spinal surgery for deformity correction. A 70 kg 12-year-old and a 44 kg 16-year-old female with main thoracic curves underwent a posterior scoliosis correction with multilevel posterior column osteotomies. Following rod insertion, significant reduction in the bilateral lower extremity MEP occurred in both cases despite mean arterial pressure exceeding 70 mmHg, which was presumed to be due to the scale of the correction attempted in the setting of haemorrhage which rendered the patient acutely anaemic, thus compromising cord vasculature and oxygen delivery. The rods were removed and packed red blood cell transfusions were administered in response to acute anaemia as a result of haemorrhage in both cases. Neither was noted to be anaemic preoperatively. Once the MEP signals improved, the rods were reinserted and correction was attempted, limited by neuromonitoring signals and resistance of the bony anchors to pullout. At closure, the MEPs were near baseline in the first case and >50% of baseline in the second. There were no changes in the somatosensory evoked potential signals in either case. Post-operative neurological function was normal in both patients. Correcting the circulating haemoglobin concentration through blood product resuscitation allowed for safe correction of spinal deformity in two cases with significant bilateral MEP loss following the initial placement of rods.