Browsing by Subject "amygdala"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Restricted Global view of the functional molecular organization of the avian cerebrum: mirror images and functional columns.(J Comp Neurol, 2013-11) Jarvis, Erich D; Yu, Jing; Rivas, Miriam V; Horita, Haruhito; Feenders, Gesa; Whitney, Osceola; Jarvis, Syrus C; Jarvis, Electra R; Kubikova, Lubica; Puck, Ana EP; Siang-Bakshi, Connie; Martin, Suzanne; McElroy, Michael; Hara, Erina; Howard, Jason; Pfenning, Andreas; Mouritsen, Henrik; Chen, Chun-Chun; Wada, KazuhiroBased on quantitative cluster analyses of 52 constitutively expressed or behaviorally regulated genes in 23 brain regions, we present a global view of telencephalic organization of birds. The patterns of constitutively expressed genes revealed a partial mirror image organization of three major cell populations that wrap above, around, and below the ventricle and adjacent lamina through the mesopallium. The patterns of behaviorally regulated genes revealed functional columns of activation across boundaries of these cell populations, reminiscent of columns through layers of the mammalian cortex. The avian functionally regulated columns were of two types: those above the ventricle and associated mesopallial lamina, formed by our revised dorsal mesopallium, hyperpallium, and intercalated hyperpallium; and those below the ventricle, formed by our revised ventral mesopallium, nidopallium, and intercalated nidopallium. Based on these findings and known connectivity, we propose that the avian pallium has four major cell populations similar to those in mammalian cortex and some parts of the amygdala: 1) a primary sensory input population (intercalated pallium); 2) a secondary intrapallial population (nidopallium/hyperpallium); 3) a tertiary intrapallial population (mesopallium); and 4) a quaternary output population (the arcopallium). Each population contributes portions to columns that control different sensory or motor systems. We suggest that this organization of cell groups forms by expansion of contiguous developmental cell domains that wrap around the lateral ventricle and its extension through the middle of the mesopallium. We believe that the position of the lateral ventricle and its associated mesopallium lamina has resulted in a conceptual barrier to recognizing related cell groups across its border, thereby confounding our understanding of homologies with mammals.Item Open Access Self-rated amygdala activity: an auto-biological index of affective distress.(Personality neuroscience, 2019-01) MacDuffie, Katherine E; Knodt, Annchen R; Radtke, Spenser R; Strauman, Timothy J; Hariri, Ahmad RAuto-biological beliefs-beliefs about one's own biology-are an understudied component of personal identity. Research participants who are led to believe they are biologically vulnerable to affective disorders report more symptoms and less ability to control their mood; however, little is known about the impact of self-originating beliefs about risk for psychopathology, and whether such beliefs correspond to empirically derived estimates of actual vulnerability. Participants in a neuroimaging study (n = 1256) completed self-report measures of affective symptoms, perceived stress, and neuroticism, and an emotional face processing task in the scanner designed to elicit threat responses from the amygdala. A subsample (n = 63) additionally rated their own perceived neural response to threat (i.e., amygdala activity) compared to peers. Self-ratings of neural threat response were uncorrelated with actual threat-related amygdala activity measured via BOLD fMRI. However, self-ratings predicted subjective distress across a variety of self-report measures. In contrast, in the full sample, threat-related amygdala activity was uncorrelated with self-report measures of affective distress. These findings suggest that beliefs about one's own biological threat response-while unrelated to measured neural activation-may be informative indicators of psychological functioning.Item Open Access Staying cool when things get hot: emotion regulation modulates neural mechanisms of memory encoding.(Front Hum Neurosci, 2010) Hayes, Jasmeet Pannu; Morey, Rajendra A; Petty, Christopher M; Seth, Srishti; Smoski, Moria J; McCarthy, Gregory; Labar, Kevin SDuring times of emotional stress, individuals often engage in emotion regulation to reduce the experiential and physiological impact of negative emotions. Interestingly, emotion regulation strategies also influence memory encoding of the event. Cognitive reappraisal is associated with enhanced memory while expressive suppression is associated with impaired explicit memory of the emotional event. However, the mechanism by which these emotion regulation strategies affect memory is unclear. We used event-related fMRI to investigate the neural mechanisms that give rise to memory formation during emotion regulation. Twenty-five participants viewed negative pictures while alternately engaging in cognitive reappraisal, expressive suppression, or passive viewing. As part of the subsequent memory design, participants returned to the laboratory two weeks later for a surprise memory test. Behavioral results showed a reduction in negative affect and a retention advantage for reappraised stimuli relative to the other conditions. Imaging results showed that successful encoding during reappraisal was uniquely associated with greater co-activation of the left inferior frontal gyrus, amygdala, and hippocampus, suggesting a possible role for elaborative encoding of negative memories. This study provides neurobehavioral evidence that engaging in cognitive reappraisal is advantageous to both affective and mnemonic processes.