Browsing by Subject "androgen receptor"
Results Per Page
Sort Options
Item Open Access Integrated Chromatin Analyses Offer Insights Into Trans-factor Function In Cancer Cell Lines(2012) Tewari, AlokUnderstanding the mechanisms whereby the sequence of the human genome is interpreted into diverse cellular phenotypes is a critical endeavor in modern biology. A major determinant of cellular phenotype is the spatial and temporal pattern gene expression, which is regulated in part by epigenomic properties such as histone post-translational modifications, DNA methylation, chromatin accessibility and the 3-dimensional architecture of the genome within the nucleus. These properties regulate the dynamic assembly of transcription factors and their co-regulatory proteins upon chromatin. To properly understand the interplay between the epigenomic framework of a cell and transcription factors, integrated analysis of transcription factor-DNA binding, chromatin status, and transcription is required. This work integrates information about chromatin accessibility, as measured by DNaseI hypersensitivity, transcription factor binding, as measured by chromatin immunoprecipitation, and transcription, as measured by microarray or transcriptome sequencing, to further understand the functional role of two important transcription factors, the androgen receptor (AR) and CTCF, in cancer cell line models. Data gathered from a prostate cancer cell line model demonstrate that the AR does not exclusively bind accessible chromatin upon ligand-activation, and induces significant changes in chromatin accessibility upon binding. Regions of quantitative change in chromatin accessibility contain motifs corresponding to potential collaborators for AR function, and are also significantly associated with AR-regulated transcriptional changes. Furthermore, base pair resolution of the DNaseI cleavage profile revealed three distinct patterns of AR-DNA interaction, suggesting multiple modes of AR interacting with the genome. A novel role for the nuclear receptor REV-ERBα in AR-mediated transcription was explored within the same model system. Though preliminary, results thus far indicate that REV-ERBα is required for AR-induced increases in target gene transcription in a manner that is likely dependent on HDAC3. Genetic knockdown of REV-ERBα resulted in notable changes in chromatin accessibility around AR-target genes both before and after AR activation. The function of CTCF was interrogated using stable knockdown in a breast cancer cell line model. CTCF knockdown led to widespread changes in chromatin accessibility that were dependent on DNA sequence. Further analysis suggested that AP-1 and FOXA1 are involved in CTCF function. Together, the work presented in this dissertation offers novel insight into the behavior of two critical transcription factors in cancer cell lines, and describe a framework of analysis that can be extended and applied to any transcription factor within any desired cellular context.
Item Open Access Motor neuron degeneration in spinal and Bulbar Muscular Atrophy is a skeletal muscle-driven process: Relevance to therapy development and implications for related motor neuron diseases.(Rare Dis, 2014) Cortes, Constanza J; La Spada, Albert RNon-cell autonomous degeneration has arisen as an important mechanism in neurodegenerative disorders. Using a novel line of BAC androgen receptor (AR) transgenic mice with a floxed transgene (BAC fxAR121), we uncovered a key role for skeletal muscle in X-linked Spinal and Bulbar Muscular Atrophy (SBMA), a motor neuronopathy caused by a polyglutamine expansion in exon 1 of the AR gene. By excising the mutant AR transgene from muscle only, we achieved complete rescue of neuromuscular phenotypes in these mice, despite retaining strong CNS expression. Furthermore, we delivered an antisense oligonucleotide (ASO) directed against the human AR transgene by peripheral injection, and documented that peripheral ASO delivery could rescue muscle weakness and premature death in BAC fxAR121 mice. Our results reveal a crucial role for skeletal muscle in SBMA disease pathogenesis, and offer an appealing avenue for therapy development for SBMA and perhaps also for related motor neuron diseases.Item Open Access Snail promotes resistance to enzalutamide through regulation of androgen receptor activity in prostate cancer.(Oncotarget, 2016-08-02) Ware, Kathryn E; Somarelli, Jason A; Schaeffer, Daneen; Li, Jing; Zhang, Tian; Park, Sally; Patierno, Steven R; Freedman, Jennifer; Foo, Wen-Chi; Garcia-Blanco, Mariano A; Armstrong, Andrew JTreatment with androgen-targeted therapies can induce upregulation of epithelial plasticity pathways. Epithelial plasticity is known to be important for metastatic dissemination and therapeutic resistance. The goal of this study is to elucidate the functional consequence of induced epithelial plasticity on AR regulation during disease progression to identify factors important for treatment-resistant and metastatic prostate cancer. We pinpoint the epithelial plasticity transcription factor, Snail, at the nexus of enzalutamide resistance and prostate cancer metastasis both in preclinical models of prostate cancer and in patients. In patients, Snail expression is associated with Gleason 9-10 high-risk disease and is strongly overexpressed in metastases as compared to localized prostate cancer. Snail expression is also elevated in enzalutamide-resistant prostate cancer cells compared to enzalutamide-sensitive cells, and downregulation of Snail re-sensitizes enzalutamide-resistant cells to enzalutamide. While activation of Snail increases migration and invasion, it is also capable of promoting enzalutamide resistance in enzalutamide-sensitive cells. This Snail-mediated enzalutamide resistance is a consequence of increased full-length AR and AR-V7 expression and nuclear localization. Downregulation of either full-length AR or AR-V7 re-sensitizes cells to enzalutamide in the presence of Snail, thus connecting Snail-induced enzalutamide resistance directly to AR biology. Finally, we demonstrate that Snail is capable of mediating-resistance through AR even in the absence of AR-V7. These findings imply that increased Snail expression during progression to metastatic disease may prime cells for resistance to AR-targeted therapies by promoting AR activity in prostate cancer.Item Open Access Targeting Histone Deacetylases in Advanced Prostate Cancer(2015) Brunner, Abigail MariaThe androgen receptor (AR) signaling axis is a well-established therapeutic target in prostate cancer, due to its central role in tumor maintenance and progression. Although patients respond initially to androgen deprivation therapies and AR antagonists, they invariably progress to a castration-resistant state. Consequently, there is an unmet need for agents that target the AR signaling axis in a unique manner.
Histone deacetylase (HDAC) inhibitors repress AR signaling and prostate cancer growth in cellular and xenograft models. However, HDAC inhibitors also induce epithelial to mesenchymal (EMT) and neuroendocrine differentiation, both of which are associated with prostate cancer progression and aggressiveness. Given that 18 different HDAC isoforms have been identified in humans, and non-selective or Class I (HDAC1, 2, 3, and 8) HDAC inhibitors have been used in most of these studies, the relative contribution of individual HDAC isoforms to AR transcriptional activity and prostate cancer pathophysiology remains to be elucidated. The overarching goals of this study were to (1) determine the role of individual Class I HDACs in AR transcriptional activity and prostate cancer growth, (2) identify selective HDAC inhibitors that have reduced adverse profiles to the treatment of prostate cancer, and (3) identify potential HDAC-interacting proteins that regulate AR target gene transcription and prostate cancer growth.
Using genetic knockdown studies and pharmacological inhibitors with isoform selectivity, we identified that HDAC3 was required for AR transcriptional activity and proliferation in cellular models of androgen-sensitive and castration-resistant prostate cancer (CRPC). Additionally, we found that RGFP966, an HDAC3-selective inhibitor, attenuated the growth of a xenograft model of CRPC. Furthermore, non-selective HDAC inhibitors induced EMT and neuroendocrine markers in prostate cancer cells, but RGFP966 treatment did not. These studies provide rationale for selective inhibition of HDAC3 for the treatment of CRPC, and could provide an explanation for the lack of success using non-selective HDAC inhibitors in clinical trials for prostate cancer.
We also assessed the role of REV-ERB alpha, an HDAC3-interacting protein, in the regulation of AR transcriptional activity and prostate cancer growth. Using siRNA knockdown studies, REV-ERB inhibitors, and overexpression studies, we concluded that REV-ERB alpha; was required for AR target gene induction and prostate cancer growth, including models of CRPC. These studies also provide rational for targeting REV-ERB alpha; for the treatment of CRPC.
Taken together, these studies identify two novel targets in the HDAC signaling axis for the treatment of prostate cancer: HDAC3 and REV-ERB alpha. Our studies provide greater insight into AR transcriptional regulation and prostate cancer pathophysiology.