Browsing by Subject "artificial intelligence"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Open Access Application of Machine Learning in Pulmonary Function Assessment Where Are We Now and Where Are We Going?(Frontiers in physiology, 2021-01) Giri, Paresh C; Chowdhury, Anand M; Bedoya, Armando; Chen, Hengji; Lee, Hyun Suk; Lee, Patty; Henriquez, Craig; MacIntyre, Neil R; Huang, Yuh-Chin TAnalysis of pulmonary function tests (PFTs) is an area where machine learning (ML) may benefit clinicians, researchers, and the patients. PFT measures spirometry, lung volumes, and carbon monoxide diffusion capacity of the lung (DLCO). The results are usually interpreted by the clinicians using discrete numeric data according to published guidelines. PFT interpretations by clinicians, however, are known to have inter-rater variability and the inaccuracy can impact patient care. This variability may be caused by unfamiliarity of the guidelines, lack of training, inadequate understanding of lung physiology, or simply mental lapses. A rules-based automated interpretation system can recapitulate expert's pattern recognition capability and decrease errors. ML can also be used to analyze continuous data or the graphics, including the flow-volume loop, the DLCO and the nitrogen washout curves. These analyses can discover novel physiological biomarkers. In the era of wearables and telehealth, particularly with the COVID-19 pandemic restricting PFTs to be done in the clinical laboratories, ML can also be used to combine mobile spirometry results with an individual's clinical profile to deliver precision medicine. There are, however, hurdles in the development and commercialization of the ML-assisted PFT interpretation programs, including the need for high quality representative data, the existence of different formats for data acquisition and sharing in PFT software by different vendors, and the need for collaboration amongst clinicians, biomedical engineers, and information technologists. Hurdles notwithstanding, the new developments would represent significant advances that could be the future of PFT, the oldest test still in use in clinical medicine.Item Open Access Artificial intelligence evolution in smart buildings for energy efficiency(Applied Sciences (Switzerland), 2021-01-02) Farzaneh, H; Malehmirchegini, L; Bejan, A; Afolabi, T; Mulumba, A; Daka, PP© 2021 by the authors. Licensee MDPI, Basel, Switzerland. The emerging concept of smart buildings, which requires the incorporation of sensors and big data (BD) and utilizes artificial intelligence (AI), promises to usher in a new age of urban energy efficiency. By using AI technologies in smart buildings, energy consumption can be reduced through better control, improved reliability, and automation. This paper is an in‐depth review of recent studies on the application of artificial intelligence (AI) technologies in smart buildings through the concept of a building management system (BMS) and demand response programs (DRPs). In addition to elaborating on the principles and applications of the AI‐based modeling approaches widely used in building energy use prediction, an evaluation framework is introduced and used for assessing the recent research conducted in this field and across the major AI domains, including energy, comfort, design, and maintenance. Finally, the paper includes a discussion on the open challenges and future directions of research on the application of AI in smart buildings.Item Open Access Black Box Warning: Large Language Models and the Future of Infectious Diseases Consultation.(Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 2023-11) Schwartz, Ilan S; Link, Katherine E; Daneshjou, Roxana; Cortés-Penfield, NicolásLarge language models (LLMs) are artificial intelligence systems trained by deep learning algorithms to process natural language and generate text responses to user prompts. Some approach physician performance on a range of medical challenges, leading some proponents to advocate for their potential use in clinical consultation and prompting some consternation about the future of cognitive specialties. However, LLMs currently have limitations that preclude safe clinical deployment in performing specialist consultations, including frequent confabulations, lack of contextual awareness crucial for nuanced diagnostic and treatment plans, inscrutable and unexplainable training data and methods, and propensity to recapitulate biases. Nonetheless, considering the rapid improvement in this technology, growing calls for clinical integration, and healthcare systems that chronically undervalue cognitive specialties, it is critical that infectious diseases clinicians engage with LLMs to enable informed advocacy for how they should-and shouldn't-be used to augment specialist care.Item Open Access Evaluation of ML-Based Clinical Decision Support Tool to Replace an Existing Tool in an Academic Health System: Lessons Learned.(Journal of personalized medicine, 2020-08-27) Woo, Myung; Alhanti, Brooke; Lusk, Sam; Dunston, Felicia; Blackwelder, Stephen; Lytle, Kay S; Goldstein, Benjamin A; Bedoya, ArmandoThere is increasing application of machine learning tools to problems in healthcare, with an ultimate goal to improve patient safety and health outcomes. When applied appropriately, machine learning tools can augment clinical care provided to patients. However, even if a model has impressive performance characteristics, prospectively evaluating and effectively implementing models into clinical care remains difficult. The primary objective of this paper is to recount our experiences and challenges in comparing a novel machine learning-based clinical decision support tool to legacy, non-machine learning tools addressing potential safety events in the hospitals and to summarize the obstacles which prevented evaluation of clinical efficacy of tools prior to widespread institutional use. We collected and compared safety events data, specifically patient falls and pressure injuries, between the standard of care approach and machine learning (ML)-based clinical decision support (CDS). Our assessment was limited to performance of the model rather than the workflow due to challenges in directly comparing both approaches. We did note a modest improvement in falls with ML-based CDS; however, it was not possible to determine that overall improvement was due to model characteristics.Item Open Access Fluence Map Prediction Using Deep Learning Models - Direct Plan Generation for Pancreas Stereotactic Body Radiation Therapy.(Frontiers in artificial intelligence, 2020-01) Wang, Wentao; Sheng, Yang; Wang, Chunhao; Zhang, Jiahan; Li, Xinyi; Palta, Manisha; Czito, Brian; Willett, Christopher G; Wu, Qiuwen; Ge, Yaorong; Yin, Fang-Fang; Wu, Q JackiePurpose: Treatment planning for pancreas stereotactic body radiation therapy (SBRT) is a difficult and time-consuming task. In this study, we aim to develop a novel deep learning framework to generate clinical-quality plans by direct prediction of fluence maps from patient anatomy using convolutional neural networks (CNNs). Materials and Methods: Our proposed framework utilizes two CNNs to predict intensity-modulated radiation therapy fluence maps and generate deliverable plans: (1) Field-dose CNN predicts field-dose distributions in the region of interest using planning images and structure contours; (2) a fluence map CNN predicts the final fluence map per beam using the predicted field dose projected onto the beam's eye view. The predicted fluence maps were subsequently imported into the treatment planning system for leaf sequencing and final dose calculation (model-predicted plans). One hundred patients previously treated with pancreas SBRT were included in this retrospective study, and they were split into 85 training cases and 15 test cases. For each network, 10% of training data were randomly selected for model validation. Nine-beam benchmark plans with standardized target prescription and organ-at-risk constraints were planned by experienced clinical physicists and used as the gold standard to train the model. Model-predicted plans were compared with benchmark plans in terms of dosimetric endpoints, fluence map deliverability, and total monitor units. Results: The average time for fluence-map prediction per patient was 7.1 s. Comparing model-predicted plans with benchmark plans, target mean dose, maximum dose (0.1 cc), and D95% absolute differences in percentages of prescription were 0.1, 3.9, and 2.1%, respectively; organ-at-risk mean dose and maximum dose (0.1 cc) absolute differences were 0.2 and 4.4%, respectively. The predicted plans had fluence map gamma indices (97.69 ± 0.96% vs. 98.14 ± 0.74%) and total monitor units (2,122 ± 281 vs. 2,265 ± 373) that were comparable to the benchmark plans. Conclusions: We develop a novel deep learning framework for pancreas SBRT planning, which predicts a fluence map for each beam and can, therefore, bypass the lengthy inverse optimization process. The proposed framework could potentially change the paradigm of treatment planning by harnessing the power of deep learning to generate clinically deliverable plans in seconds.Item Open Access Machine Learning and Precision Medicine in Emergency Medicine: The Basics.(Cureus, 2021-09) Lee, Sangil; Lam, Samuel H; Hernandes Rocha, Thiago Augusto; Fleischman, Ross J; Staton, Catherine A; Taylor, Richard; Limkakeng, Alexander TAs machine learning (ML) and precision medicine become more readily available and used in practice, emergency physicians must understand the potential advantages and limitations of the technology. This narrative review focuses on the key components of machine learning, artificial intelligence, and precision medicine in emergency medicine (EM). Based on the content expertise, we identified articles from EM literature. The authors provided a narrative summary of each piece of literature. Next, the authors provided an introduction of the concepts of ML, artificial intelligence as an extension of ML, and precision medicine. This was followed by concrete examples of their applications in practice and research. Subsequently, we shared our thoughts on how to consume the existing research in these subjects and conduct high-quality research for academic emergency medicine. We foresee that the EM community will continue to adapt machine learning, artificial intelligence, and precision medicine in research and practice. We described several key components using our expertise.Item Open Access Machine Learning Consensus Clustering Approach for Patients with Lactic Acidosis in Intensive Care Units.(Journal of personalized medicine, 2021-11) Pattharanitima, Pattharawin; Thongprayoon, Charat; Petnak, Tananchai; Srivali, Narat; Gembillo, Guido; Kaewput, Wisit; Chesdachai, Supavit; Vallabhajosyula, Saraschandra; O'Corragain, Oisin A; Mao, Michael A; Garovic, Vesna D; Qureshi, Fawad; Dillon, John J; Cheungpasitporn, WisitLactic acidosis is a heterogeneous condition with multiple underlying causes and associated outcomes. The use of multi-dimensional patient data to subtype lactic acidosis can personalize patient care. Machine learning consensus clustering may identify lactic acidosis subgroups with unique clinical profiles and outcomes. We used the Medical Information Mart for Intensive Care III database to abstract electronic medical record data from patients admitted to intensive care units (ICU) in a tertiary care hospital in the United States. We included patients who developed lactic acidosis (defined as serum lactate ≥ 4 mmol/L) within 48 h of ICU admission. We performed consensus clustering analysis based on patient characteristics, comorbidities, vital signs, organ supports, and laboratory data to identify clinically distinct lactic acidosis subgroups. We calculated standardized mean differences to show key subgroup features. We compared outcomes among subgroups. We identified 1919 patients with lactic acidosis. The algorithm revealed three best unique lactic acidosis subgroups based on patient variables. Cluster 1 (n = 554) was characterized by old age, elective admission to cardiac surgery ICU, vasopressor use, mechanical ventilation use, and higher pH and serum bicarbonate. Cluster 2 (n = 815) was characterized by young age, admission to trauma/surgical ICU with higher blood pressure, lower comorbidity burden, lower severity index, and less vasopressor use. Cluster 3 (n = 550) was characterized by admission to medical ICU, history of liver disease and coagulopathy, acute kidney injury, lower blood pressure, higher comorbidity burden, higher severity index, higher serum lactate, and lower pH and serum bicarbonate. Cluster 3 had the worst outcomes, while cluster 1 had the most favorable outcomes in terms of persistent lactic acidosis and mortality. Consensus clustering analysis synthesized the pattern of clinical and laboratory data to reveal clinically distinct lactic acidosis subgroups with different outcomes.Item Open Access Machine Learning Prediction Models for Mortality in Intensive Care Unit Patients with Lactic Acidosis.(Journal of clinical medicine, 2021-10) Pattharanitima, Pattharawin; Thongprayoon, Charat; Kaewput, Wisit; Qureshi, Fawad; Qureshi, Fahad; Petnak, Tananchai; Srivali, Narat; Gembillo, Guido; O'Corragain, Oisin A; Chesdachai, Supavit; Vallabhajosyula, Saraschandra; Guru, Pramod K; Mao, Michael A; Garovic, Vesna D; Dillon, John J; Cheungpasitporn, WisitLactic acidosis is the most common cause of anion gap metabolic acidosis in the intensive care unit (ICU), associated with poor outcomes including mortality. We sought to compare machine learning (ML) approaches versus logistic regression analysis for prediction of mortality in lactic acidosis patients admitted to the ICU. We used the Medical Information Mart for Intensive Care (MIMIC-III) database to identify ICU adult patients with lactic acidosis (serum lactate ≥4 mmol/L). The outcome of interest was hospital mortality. We developed prediction models using four ML approaches consisting of random forest (RF), decision tree (DT), extreme gradient boosting (XGBoost), artificial neural network (ANN), and statistical modeling with forward stepwise logistic regression using the testing dataset. We then assessed model performance using area under the receiver operating characteristic curve (AUROC), accuracy, precision, error rate, Matthews correlation coefficient (MCC), F1 score, and assessed model calibration using the Brier score, in the independent testing dataset. Of 1919 lactic acidosis ICU patients, 1535 and 384 were included in the training and testing dataset, respectively. Hospital mortality was 30%. RF had the highest AUROC at 0.83, followed by logistic regression 0.81, XGBoost 0.81, ANN 0.79, and DT 0.71. In addition, RF also had the highest accuracy (0.79), MCC (0.45), F1 score (0.56), and lowest error rate (21.4%). The RF model was the most well-calibrated. The Brier score for RF, DT, XGBoost, ANN, and multivariable logistic regression was 0.15, 0.19, 0.18, 0.19, and 0.16, respectively. The RF model outperformed multivariable logistic regression model, SOFA score (AUROC 0.74), SAP II score (AUROC 0.77), and Charlson score (AUROC 0.69). The ML prediction model using RF algorithm provided the highest predictive performance for hospital mortality among ICU patient with lactic acidosis.Item Open Access Overcoming barriers to the adoption and implementation of predictive modeling and machine learning in clinical care: what can we learn from US academic medical centers?(JAMIA open, 2020-07) Watson, Joshua; Hutyra, Carolyn A; Clancy, Shayna M; Chandiramani, Anisha; Bedoya, Armando; Ilangovan, Kumar; Nderitu, Nancy; Poon, Eric GThere is little known about how academic medical centers (AMCs) in the US develop, implement, and maintain predictive modeling and machine learning (PM and ML) models. We conducted semi-structured interviews with leaders from AMCs to assess their use of PM and ML in clinical care, understand associated challenges, and determine recommended best practices. Each transcribed interview was iteratively coded and reconciled by a minimum of 2 investigators to identify key barriers to and facilitators of PM and ML adoption and implementation in clinical care. Interviews were conducted with 33 individuals from 19 AMCs nationally. AMCs varied greatly in the use of PM and ML within clinical care, from some just beginning to explore their utility to others with multiple models integrated into clinical care. Informants identified 5 key barriers to the adoption and implementation of PM and ML in clinical care: (1) culture and personnel, (2) clinical utility of the PM and ML tool, (3) financing, (4) technology, and (5) data. Recommendation to the informatics community to overcome these barriers included: (1) development of robust evaluation methodologies, (2) partnership with vendors, and (3) development and dissemination of best practices. For institutions developing clinical PM and ML applications, they are advised to: (1) develop appropriate governance, (2) strengthen data access, integrity, and provenance, and (3) adhere to the 5 rights of clinical decision support. This article highlights key challenges of implementing PM and ML in clinical care at AMCs and suggests best practices for development, implementation, and maintenance at these institutions.