Browsing by Subject "beta Catenin"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Open Access Cancer-cell-derived GABA promotes β-catenin-mediated tumour growth and immunosuppression.(Nature cell biology, 2022-02) Huang, De; Wang, Yan; Thompson, J Will; Yin, Tao; Alexander, Peter B; Qin, Diyuan; Mudgal, Poorva; Wu, Haiyang; Liang, Yaosi; Tan, Lianmei; Pan, Christopher; Yuan, Lifeng; Wan, Ying; Li, Qi-Jing; Wang, Xiao-FanMany cancers have an unusual dependence on glutamine. However, most previous studies have focused on the contribution of glutamine to metabolic building blocks and the energy supply. Here, we report that cancer cells with aberrant expression of glutamate decarboxylase 1 (GAD1) rewire glutamine metabolism for the synthesis of γ-aminobutyric acid (GABA)-a prominent neurotransmitter-in non-nervous tissues. An analysis of clinical samples reveals that increased GABA levels predict poor prognosis. Mechanistically, we identify a cancer-intrinsic pathway through which GABA activates the GABAB receptor to inhibit GSK-3β activity, leading to enhanced β-catenin signalling. This GABA-mediated β-catenin activation both stimulates tumour cell proliferation and suppresses CD8+ T cell intratumoural infiltration, such that targeting GAD1 or GABABR in mouse models overcomes resistance to anti-PD-1 immune checkpoint blockade therapy. Our findings uncover a signalling role for tumour-derived GABA beyond its classic function as a neurotransmitter that can be targeted pharmacologically to reverse immunosuppression.Item Open Access CD142 Identifies Neoplastic Desmoid Tumor Cells, Uncovering Interactions Between Neoplastic and Stromal Cells That Drive Proliferation.(Cancer research communications, 2023-04) Al-Jazrawe, Mushriq; Xu, Steven; Poon, Raymond; Wei, Qingxia; Przybyl, Joanna; Varma, Sushama; van de Rijn, Matt; Alman, Benjamin AThe interaction between neoplastic and stromal cells within a tumor mass plays an important role in cancer biology. However, it is challenging to distinguish between tumor and stromal cells in mesenchymal tumors because lineage-specific cell surface markers typically used in other cancers do not distinguish between the different cell subpopulations. Desmoid tumors consist of mesenchymal fibroblast-like cells driven by mutations stabilizing beta-catenin. Here we aimed to identify surface markers that can distinguish mutant cells from stromal cells to study tumor-stroma interactions. We analyzed colonies derived from single cells from human desmoid tumors using a high-throughput surface antigen screen, to characterize the mutant and nonmutant cells. We found that CD142 is highly expressed by the mutant cell populations and correlates with beta-catenin activity. CD142-based cell sorting isolated the mutant population from heterogeneous samples, including one where no mutation was previously detected by traditional Sanger sequencing. We then studied the secretome of mutant and nonmutant fibroblastic cells. PTX3 is one stroma-derived secreted factor that increases mutant cell proliferation via STAT6 activation. These data demonstrate a sensitive method to quantify and distinguish neoplastic from stromal cells in mesenchymal tumors. It identifies proteins secreted by nonmutant cells that regulate mutant cell proliferation that could be therapeutically.Significance
Distinguishing between neoplastic (tumor) and non-neoplastic (stromal) cells within mesenchymal tumors is particularly challenging, because lineage-specific cell surface markers typically used in other cancers do not differentiate between the different cell subpopulations. Here, we developed a strategy combining clonal expansion with surface proteome profiling to identify markers for quantifying and isolating mutant and nonmutant cell subpopulations in desmoid tumors, and to study their interactions via soluble factors.Item Open Access Cytokinesis proteins Tum and Pav have a nuclear role in Wnt regulation.(J Cell Sci, 2010-07-01) Jones, Whitney M; Chao, Anna T; Zavortink, Michael; Saint, Robert; Bejsovec, AmyWg/Wnt signals specify cell fates in both invertebrate and vertebrate embryos and maintain stem-cell populations in many adult tissues. Deregulation of the Wnt pathway can transform cells to a proliferative fate, leading to cancer. We have discovered that two Drosophila proteins that are crucial for cytokinesis have a second, largely independent, role in restricting activity of the Wnt pathway. The fly homolog of RacGAP1, Tumbleweed (Tum)/RacGAP50C, and its binding partner, the kinesin-like protein Pavarotti (Pav), negatively regulate Wnt activity in fly embryos and in cultured mammalian cells. Unlike many known regulators of the Wnt pathway, these molecules do not affect stabilization of Arm/beta-catenin (betacat), the principal effector molecule in Wnt signal transduction. Rather, they appear to act downstream of betacat stabilization to control target-gene transcription. Both Tum and Pav accumulate in the nuclei of interphase cells, a location that is spatially distinct from their cleavage-furrow localization during cytokinesis. We show that this nuclear localization is essential for their role in Wnt regulation. Thus, we have identified two modulators of the Wnt pathway that have shared functions in cell division, which hints at a possible link between cytokinesis and Wnt activity during tumorigenesis.Item Open Access Dermal exosomes containing miR-218-5p promote hair regeneration by regulating β-catenin signaling.(Science advances, 2020-07) Hu, Shiqi; Li, Zhenhua; Lutz, Halle; Huang, Ke; Su, Teng; Cores, Jhon; Dinh, Phuong-Uyen Cao; Cheng, KeThe progression in the hair follicle cycle from the telogen to the anagen phase is the key to regulating hair regrowth. Dermal papilla (DP) cells support hair growth and regulate the hair cycle. However, they gradually lose key inductive properties upon culture. DP cells can partially restore their capacity to promote hair regrowth after being subjected to spheroid culture. In this study, results revealed that DP spheroids are effective at inducing the progression of the hair follicle cycle from telogen to anagen compared with just DP cell or minoxidil treatment. Because of the importance of paracrine signaling in this process, secretome and exosomes were isolated from DP cell culture, and their therapeutic efficacies were investigated. We demonstrated that miR-218-5p was notably up-regulated in DP spheroid-derived exosomes. Western blot and immunofluorescence imaging were used to demonstrate that DP spheroid-derived exosomes up-regulated β-catenin, promoting the development of hair follicles.Item Open Access Experimental inhibition of porcupine-mediated Wnt O-acylation attenuates kidney fibrosis.(Kidney Int, 2016-05) Madan, Babita; Patel, Mehul B; Zhang, Jiandong; Bunte, Ralph M; Rudemiller, Nathan P; Griffiths, Robert; Virshup, David M; Crowley, Steven DActivated Wnt signaling is critical in the pathogenesis of renal fibrosis, a final common pathway for most forms of chronic kidney disease. Therapeutic intervention by inhibition of individual Wnts or downstream Wnt/β-catenin signaling has been proposed, but these approaches do not interrupt the functions of all Wnts nor block non-canonical Wnt signaling pathways. Alternatively, an orally bioavailable small molecule, Wnt-C59, blocks the catalytic activity of the Wnt-acyl transferase porcupine, and thereby prevents secretion of all Wnt isoforms. We found that inhibiting porcupine dramatically attenuates kidney fibrosis in the murine unilateral ureteral obstruction model. Wnt-C59 treatment similarly blunts collagen mRNA expression in the obstructed kidney. Consistent with its actions to broadly arrest Wnt signaling, porcupine inhibition reduces expression of Wnt target genes and bolsters nuclear exclusion of β-catenin in the kidney following ureteral obstruction. Importantly, prevention of Wnt secretion by Wnt-C59 blunts expression of inflammatory cytokines in the obstructed kidney that otherwise provoke a positive feedback loop of Wnt expression in collagen-producing fibroblasts and epithelial cells. Thus, therapeutic targeting of porcupine abrogates kidney fibrosis not only by overcoming the redundancy of individual Wnt isoforms but also by preventing upstream cytokine-induced Wnt generation. These findings reveal a novel therapeutic maneuver to protect the kidney from fibrosis by interrupting a pathogenic crosstalk loop between locally generated inflammatory cytokines and the Wnt/β-catenin signaling pathway.Item Open Access Melanoma-Derived Wnt5a Promotes Local Dendritic-Cell Expression of IDO and Immunotolerance: Opportunities for Pharmacologic Enhancement of Immunotherapy.(Cancer Immunol Res, 2015-09) Holtzhausen, Alisha; Zhao, Fei; Evans, Kathy S; Tsutsui, Masahito; Orabona, Ciriana; Tyler, Douglas S; Hanks, Brent AThe β-catenin signaling pathway has been demonstrated to promote the development of a tolerogenic dendritic cell (DC) population capable of driving regulatory T-cell (Treg) differentiation. Further studies have implicated tolerogenic DCs in promoting carcinogenesis in preclinical models. The molecular mechanisms underlying the establishment of immune tolerance by this DC population are poorly understood, and the methods by which developing cancers can co-opt this pathway to subvert immune surveillance are currently unknown. This work demonstrates that melanoma-derived Wnt5a ligand upregulates the durable expression and activity of the indoleamine 2,3-dioxygenase-1 (IDO) enzyme by local DCs in a manner that depends upon the β-catenin signaling pathway. These data indicate that Wnt5a-conditioned DCs promote the differentiation of Tregs in an IDO-dependent manner, and that this process serves to suppress melanoma immune surveillance. We further show that the genetic silencing of the PORCN membrane-bound O-acyl transferase, which is necessary for melanoma Wnt ligand secretion, enhances antitumor T-cell immunity, and that the pharmacologic inhibition of this enzyme synergistically suppresses melanoma progression when combined with anti-CTLA-4 antibody therapy. Finally, our data suggest that β-catenin signaling activity, based on a target gene expression profile that includes IDO in human sentinel lymph node-derived DCs, is associated with melanoma disease burden and diminished progression-free survival. This work implicates the Wnt-β-catenin signaling pathway as a novel therapeutic target in the melanoma immune microenvironment and demonstrates the potential impact of manipulating DC function as a strategy for optimizing tumor immunotherapy.Item Open Access Paracrine Wnt5a-β-Catenin Signaling Triggers a Metabolic Program that Drives Dendritic Cell Tolerization.(Immunity, 2018-01) Zhao, Fei; Xiao, Christine; Evans, Kathy S; Theivanthiran, Tbalamayooran; DeVito, Nicholas; Holtzhausen, Alisha; Liu, Juan; Liu, Xiaojing; Boczkowski, David; Nair, Smita; Locasale, Jason W; Hanks, Brent ADespite recent advances, many cancers remain refractory to available immunotherapeutic strategies. Emerging evidence indicates that the tolerization of local dendritic cells (DCs) within the tumor microenvironment promotes immune evasion. Here, we have described a mechanism by which melanomas establish a site of immune privilege via a paracrine Wnt5a-β-catenin-peroxisome proliferator-activated receptor-γ (PPAR-γ) signaling pathway that drives fatty acid oxidation (FAO) in DCs by upregulating the expression of the carnitine palmitoyltransferase-1A (CPT1A) fatty acid transporter. This FAO shift increased the protoporphyrin IX prosthetic group of indoleamine 2,3-dioxgenase-1 (IDO) while suppressing interleukin(IL)-6 and IL-12 cytokine expression, culminating in enhanced IDO activity and the generation of regulatory T cells. We demonstrated that blockade of this pathway augmented anti-melanoma immunity, enhanced the activity of anti-PD-1 antibody immunotherapy, and suppressed disease progression in a transgenic melanoma model. This work implicates a role for tumor-mediated metabolic reprogramming of local DCs in immune evasion and immunotherapy resistance.