Browsing by Subject "biomimetics"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Platelet-Inspired Nanocells for Targeted Heart Repair After Ischemia/Reperfusion Injury.(Advanced functional materials, 2019-01) Su, Teng; Huang, Ke; Ma, Hong; Liang, Hongxia; Dinh, Phuong-Uyen; Chen, Justin; Shen, Deliang; Allen, Tyler A; Qiao, Li; Li, Zhenhua; Hu, Shiqi; Cores, Jhon; Frame, Brianna N; Young, Ashlyn T; Yin, Qi; Liu, Jiandong; Qian, Li; Caranasos, Thomas G; Brudno, Yevgeny; Ligler, Frances S; Cheng, KeCardiovascular disease is the leading cause of mortality worldwide. While reperfusion therapy is vital for patient survival post-heart attack, it also causes further tissue injury, known as myocardial ischemia/reperfusion (I/R) injury in clinical practice. Exploring ways to attenuate I/R injury is of clinical interest for improving post-ischemic recovery. A platelet-inspired nanocell (PINC) that incorporates both prostaglandin E2 (PGE2)-modified platelet membrane and cardiac stromal cell-secreted factors to target the heart after I/R injury is introduced. By taking advantage of the natural infarct-homing ability of platelet membrane and the overexpression of PGE2 receptors (EPs) in the pathological cardiac microenvironment after I/R injury, the PINCs can achieve targeted delivery of therapeutic payload to the injured heart. Furthermore, a synergistic treatment efficacy can be achieved by PINC, which combines the paracrine mechanism of cell therapy with the PGE2/EP receptor signaling that is involved in the repair and regeneration of multiple tissues. In a mouse model of myocardial I/R injury, intravenous injection of PINCs results in augmented cardiac function and mitigated heart remodeling, which is accompanied by the increase in cycling cardiomyocytes, activation of endogenous stem/progenitor cells, and promotion of angiogenesis. This approach represents a promising therapeutic delivery platform for treating I/R injury.Item Open Access PROGRESS TOWARDS A BIOMIMETIC PROSTHETIC ARM(2002) Russell, Donald L.Detailed design of a prototype prosthetic limb based on biomimetic principles has been completed. This paper will update the progress that has been made toward the creation of a new, high-performance limb. The limb uses antagonistic actuators with low and variable stiffness to create dynamics and interaction properties similar to those of a healthy arm. Theoretical examination of the mechanical design has yielded several interesting results and an accurate estimate of the performance and improved efficiency levels of the limb. The results have been used to understand several fundamental issues regarding the design of such a limb. Prototype construction is underway and reflects overcoming several design challenges by careful use of standard components.