Browsing by Subject "biophysics"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Incidence of High Altitude Illnesses among Unacclimatized Persons Who Acutely Ascended to Tibet(2010) Ren, Yusheng; Fu, Zhongming; Shen, Weimin; Jiang, Ping; He, Yanlin; Peng, Shaojun; Wu, Zonggui; Cui, BoRen, Yusheng, Zhongming Fu, Weimin Shen, Ping Jiang, Yanlin He, Shaojun Peng, Zonggui Wu, and Bo Cui. Incidence of high altitude illnesses among unacclimatized persons who acutely ascended to Tibet. High Alt. Med. Biol. 11:39-42, 2010.-High altitude illnesses pose health threats to unwary travelers after their acute ascent to high altitude locations. The incidence of high altitude illnesses among unacclimatized persons who acutely ascend to Tibet has not been previously reported. In the present study, we surveyed the incidence of high altitude illness among 3628 unacclimatized persons who had no previous high altitude experience and who traveled to Tibet by air to an altitude of 3600 m. These subjects were asked to answer questions in a written questionnaire about symptoms associated with high altitude illnesses that occurred within 2 weeks of their first arrival, their severity, and possible contributing factors. Physical examination and appropriate laboratory tests were also performed for hospitalized subjects. We found that 2063 respondents had mild acute mountain sickness with an incidence of 57.2%, and 249 (12.07%) of them were hospitalized for treatment. The incidence of high altitude pulmonary edema was 1.9%, while no case of high altitude cerebral edema was found. Additionally, there was no report of death. Psychological stresses and excessive physical exertions possibly contributed to the onset of HAPE. Acute mountain sickness is common among unacclimatized persons after their acute ascent to Tibet. The incidence of HAPE and HACE, however, is very low among them.Item Open Access The Chloroplast Tubulin Homologs FtsZA and FtsZB from the Red Alga Galdieria sulphuraria Co-assemble into Dynamic Filaments.(J Biol Chem, 2017-02-07) Chen, Yaodong; Porter, Katie; Osawa, Masaki; Augustus, Anne Marie; Milam, Sara L; Joshi, Chandra; Osteryoung, Katherine W; Erickson, Harold PFtsZ is a homolog of eukaryotic tubulin and is present in almost all bacteria and many archaea, where it is the major cytoskeletal protein in the Z ring, required for cell division. Unlike some other cell organelles of prokaryotic origin, chloroplasts have retained FtsZ as an essential component of the division machinery. However, chloroplast FtsZs have been challenging to study because they are difficult to express and purify. To this end, we have used a FATT-tag expression system to produce as soluble proteins the two chloroplast FtsZs from Galdieria sulphuraria, a thermophilic red alga. GsFtsZA and GsFtsZB assembled individually in the presence of GTP, forming large bundles of protofilaments. GsFtsZA also assembled in the presence of GDP, the first member of the FtsZ/tubulin superfamily to do so. Mixtures of GsFtsZA and GsFtsZB assembled protofilament bundles and hydrolyzed GTP at a rate approximately equal to the sum of their individual rates, suggesting a random co-assembly. GsFtsZA assembly by itself in limiting GTP gave polymers that remained stable for a prolonged time. However, when GsFtsZB was added, the co-polymers disassembled with enhanced kinetics, suggesting that the GsFtsZB regulates and enhances disassembly dynamics. GsFtsZA-mts (where mts is a membrane-targeting amphipathic helix) formed Z ring-like helices when expressed in E. coli. Co-expression of GsFtsZB (without an mts) gave co-assembly of both into similar helices. In summary, we provide biochemical evidence that GsFtsZA assembles as the primary scaffold of the chloroplast Z ring, and that GsFtsZB co-assembly enhances polymer disassembly and dynamics.