Browsing by Subject "cell growth"
Results Per Page
Sort Options
Item Open Access Computational Systems Biology of Saccharomyces cerevisiae Cell Growth and Division(2014) Mayhew, Michael BenjaminCell division and growth are complex processes fundamental to all living organisms. In the budding yeast, Saccharomyces cerevisiae, these two processes are known to be coordinated with one another as a cell's mass must roughly double before division. Moreover, cell-cycle progression is dependent on cell size with smaller cells at birth generally taking more time in the cell cycle. This dependence is a signature of size control. Systems biology is an emerging field that emphasizes connections or dependencies between biological entities and processes over the characteristics of individual entities. Statistical models provide a quantitative framework for describing and analyzing these dependencies. In this dissertation, I take a statistical systems biology approach to study cell division and growth and the dependencies within and between these two processes, drawing on observations from richly informative microscope images and time-lapse movies. I review the current state of knowledge on these processes, highlighting key results and open questions from the biological literature. I then discuss my development of machine learning and statistical approaches to extract cell-cycle information from microscope images and to better characterize the cell-cycle progression of populations of cells. In addition, I analyze single cells to uncover correlation in cell-cycle progression, evaluate potential models of dependence between growth and division, and revisit classical assertions about budding yeast size control. This dissertation presents a unique perspective and approach towards comprehensive characterization of the coordination between growth and division.
Item Open Access Proteomic analysis defines the interactome of telomerase in the protozoan parasite, Trypanosoma brucei.(Frontiers in cell and developmental biology, 2023-01) Davis, Justin A; Reyes, Andres V; Nitika; Saha, Arpita; Wolfgeher, Donald J; Xu, Shou-Ling; Truman, Andrew W; Li, Bibo; Chakrabarti, KausikTelomerase is a ribonucleoprotein enzyme responsible for maintaining the telomeric end of the chromosome. The telomerase enzyme requires two main components to function: the telomerase reverse transcriptase (TERT) and the telomerase RNA (TR), which provides the template for telomeric DNA synthesis. TR is a long non-coding RNA, which forms the basis of a large structural scaffold upon which many accessory proteins can bind and form the complete telomerase holoenzyme. These accessory protein interactions are required for telomerase activity and regulation inside cells. The interacting partners of TERT have been well studied in yeast, human, and Tetrahymena models, but not in parasitic protozoa, including clinically relevant human parasites. Here, using the protozoan parasite, Trypanosoma brucei (T. brucei) as a model, we have identified the interactome of T. brucei TERT (TbTERT) using a mass spectrometry-based approach. We identified previously known and unknown interacting factors of TbTERT, highlighting unique features of T. brucei telomerase biology. These unique interactions with TbTERT, suggest mechanistic differences in telomere maintenance between T. brucei and other eukaryotes.