# Browsing by Subject "computational topology"

###### Results Per Page

###### Sort Options

Item Open Access Analyzing Stratified Spaces Using Persistent Versions of Intersection and Local Homology(2008-08-05) Bendich, PaulThis dissertation places intersection homology and local homology within the framework of persistence, which was originally developed for ordinary homology by Edelsbrunner, Letscher, and Zomorodian. The eventual goal, begun but not completed here, is to provide analytical tools for the study of embedded stratified spaces, as well as for high-dimensional and possibly noisy datasets for which the number of degrees of freedom may vary across the parameter space. Specifically, we create a theory of persistent intersection homology for a filtered stratified space and prove several structural theorems about the pair groups asso- ciated to such a filtration. We prove the correctness of a cubic algorithm which computes these pair groups in a simplicial setting. We also define a series of intersec- tion homology elevation functions for an embedded stratified space and characterize their local maxima in dimension one. In addition, we develop a theory of persistence for a multi-scale analogue of the local homology groups of a stratified space at a point. This takes the form of a series of local homology vineyards which allow one to assess the homological structure within a one-parameter family of neighborhoods of the point. Under the assumption of dense sampling, we prove the correctness of this assessment at a variety of radius scales.

Item Open Access High Dimensional Geometry of Sliding Window Embeddings of Periodic Videos(Proceedings of the 32st International Symposium on Computational Geometry (SOCG), 2016-06) Tralie, CWe explore the high dimensional geometry of sliding windows of periodic videos. Under a reas- onable model for periodic videos, we show that the sliding window is necessary to disambiguate all states within a period, and we show that a video embedding with a sliding window of an appropriate dimension lies on a topological loop along a hypertorus. This hypertorus has an in- dependent ellipse for each harmonic of the motion. Natural motions with sharp transitions from foreground to background have many harmonics and are hence in higher dimensions, so linear subspace projections such as PCA do not accurately summarize the geometry of these videos. Noting this, we invoke tools from topological data analysis and cohomology to parameterize mo- tions in high dimensions with circular coordinates after the embeddings. We show applications to videos in which there is obvious periodic motion and to videos in which the motion is hidden.Item Open Access Separating Features from Noise with Persistence and Statistics(2010) Wang, BeiIn this thesis, we explore techniques in statistics and persistent homology, which detect features among data sets such as graphs, triangulations and point cloud. We accompany our theorems with algorithms and experiments, to demonstrate their effectiveness in practice.

We start with the derivation of graph scan statistics, a measure useful to assess the statistical significance of a subgraph in terms of edge density. We cluster graphs into densely-connected subgraphs based on this measure. We give algorithms for finding such clusterings and experiment on real-world data.

We next study statistics on persistence, for piecewise-linear functions defined on the triangulations of topological spaces. We derive persistence pairing probabilities among vertices in the triangulation. We also provide upper bounds for total persistence in expectation.

We continue by examining the elevation function defined on the triangulation of a surface. Its local maxima obtained by persistence pairing are useful in describing features of the triangulations of protein surfaces. We describe an algorithm to compute these local maxima, with a run-time ten-thousand times faster in practice than previous method. We connect such improvement with the total Gaussian curvature of the surfaces.

Finally, we study a stratification learning problem: given a point cloud sampled from a stratified space, which points belong to the same strata, at a given scale level? We assess the local structure of a point in relation to its neighbors using kernel and cokernel persistent homology. We prove the effectiveness of such assessment through several inference theorems, under the assumption of dense sample. The topological inference theorem relates the sample density with the homological feature size. The probabilistic inference theorem provides sample estimates to assess the local structure with confidence. We describe an algorithm that computes the kernel and cokernel persistence diagrams and prove its correctness. We further experiment on simple synthetic data.