# Browsing by Subject "cond-mat.mes-hall"

Now showing 1 - 7 of 7

###### Results Per Page

###### Sort Options

Item Open Access Driven-Dissipative Phase Transition in a Kerr Oscillator: From Semi-Classical PT Symmetry to Quantum Fluctuations.(Physical Review A, 2021-03-24) Zhang, Xin HH; Baranger, Harold UWe study a minimal model that has a driven-dissipative quantum phase transition, namely a Kerr non-linear oscillator subject to driving and dissipation. Using mean-field theory, exact diagonalization, and the Keldysh formalism, we analyze the critical phenomena in this system, showing which aspects can be captured by each approach and how the approaches complement each other. Then critical scaling and finite-size scaling are calculated analytically using the quantum Langevin equation. The physics contained in this simple model is surprisingly rich: it includes a continuous phase transition, Z2 symmetry breaking, PT symmetry, state squeezing, and critical fluctuations. Due to its simplicity and solvability, this model can serve as a paradigm for exploration of open quantum many-body physics.Item Open Access Existence and computation of generalized Wannier functions for non-periodic systems in two dimensions and higherLu, Jianfeng; Stubbs, Kevin D; Watson, Alexander BExponentially-localized Wannier functions (ELWFs) are a basis of the Fermi projection of a material consisting of functions which decay exponentially fast away from their maxima. When the material is insulating and crystalline, conditions which guarantee existence of ELWFs in dimensions one, two, and three are well-known, and methods for constructing the ELWFs numerically are well-developed. We consider the case where the material is insulating but not necessarily crystalline, where much less is known. In one spatial dimension, Kivelson and Nenciu-Nenciu have proved ELWFs can be constructed as the eigenfunctions of a self-adjoint operator acting on the Fermi projection. In this work, we identify an assumption under which we can generalize the Kivelson-Nenciu-Nenciu result to two dimensions and higher. Under this assumption, we prove that ELWFs can be constructed as the eigenfunctions of a sequence of self-adjoint operators acting on the Fermi projection. We conjecture that the assumption we make is equivalent to vanishing of topological obstructions to the existence of ELWFs in the special case where the material is crystalline. We numerically verify that our construction yields ELWFs in various cases where our assumption holds and provide numerical evidence for our conjecture.Item Open Access Interference of chiral Andreev edge states(Nature Physics, 2020-08-01) Zhao, Lingfei; Arnault, Ethan G; Bondarev, Alexey; Seredinski, Andrew; Larson, Trevyn; Draelos, Anne W; Li, Hengming; Watanabe, Kenji; Taniguchi, Takashi; Amet, François; Baranger, Harold U; Finkelstein, Gleb© 2020, The Author(s), under exclusive licence to Springer Nature Limited. The search for topological excitations such as Majorana fermions has spurred interest in the boundaries between distinct quantum states. Here, we explore an interface between two prototypical phases of electrons with conceptually different ground states: the integer quantum Hall insulator and the s-wave superconductor. We find clear signatures of hybridized electron and hole states similar to chiral Majorana fermions, which we refer to as chiral Andreev edge states (CAESs). These propagate along the interface in the direction determined by the magnetic field and their interference can turn an incoming electron into an outgoing electron or hole, depending on the phase accumulated by the CAESs along their path. Our results demonstrate that these excitations can propagate and interfere over a significant length, opening future possibilities for their coherent manipulation.Item Open Access One-dimensional waveguide coupled to multiple qubits: Photon-photon correlations(EPJ Quantum Technology, 2014-12-01) Fang, YLL; Zheng, H; Baranger, HUFor a one-dimensional (1D) waveguide coupled to two or three qubits, we show that the photon-photon correlations have a wide variety of behavior, with structure that depends sensitively on the frequency and on the qubit-qubit separation L. We study the correlations by calculating the second-order correlation function g 2 (t) in which the interference among the photons multiply scattered from the qubits causes rich structure. In one case, for example, transmitted and reflected photons are both bunched initially, but then become strongly anti-bunched for a long time interval. We first calculate the correlation function g2(t) including non-Markovian effects and then show that a much simpler Markovian treatment, which can be solved analytically, is accurate for small qubit separation. As a result, the non-classical properties of microwaves in a 1D waveguide coupled to many superconducting qubits with experimentally accessible separation L could be readily explored with our approach.Item Open Access Stabilization of a Majorana Zero Mode through Quantum Frustration.(Physical Review B, 2020-07-01) Zhang, Gu; Baranger, Harold UWe analyze a system in which a topological Majorana zero mode (MZM) combines with a MZM produced by quantum frustration. At the boundary between the topological and non-topological states, a MZM does not appear. The system that we study combines two parts, a grounded topological superconducting wire that hosts two MZM at its ends, and an on-resonant quantum dot connected to two dissipative leads. The quantum dot with dissipative leads creates an effective two-channel Kondo (2CK) state in which quantum frustration yields an isolated MZM at the dot. We find that coupling the dot to one of the wire Majoranas stabilizes the MZM at the other end of the wire. In addition to providing a route to achieving an unpaired Majorana zero mode, this scheme provides a clear signature of the presence of the 2CK Majorana.Item Open Access Unveiling environmental entanglement in strongly dissipative qubits(arXiv, 2013-01-30) Bera, Soumya; Florens, Serge; Baranger, Harold; Roch, Nicolas; Nazir, Ahsan; Chin, AlexThe coupling of a qubit to a macroscopic reservoir plays a fundamental role in understanding the complex transition from the quantum to the classical world. Considering a harmonic environment, we use both intuitive arguments and numerical many-body quantum tomography to study the structure of the complete wavefunction arising in the strong-coupling regime, reached for intense qubit-environment interaction. The resulting strongly-correlated many-body ground state is built from quantum superpositions of adiabatic (polaron-like) and non-adiabatic (antipolaron-like) contributions from the bath of quantum oscillators. The emerging Schrödinger cat environmental wavefunctions can be described quantitatively via simple variational coherent states. In contrast to qubit-environment entanglement, we show that non-classicality and entanglement among the modes in the reservoir are crucial for the stabilization of qubit superpositions in regimes where standard theories predict an effectively classical spin.Item Open Access Wavepackets in inhomogeneous periodic media: effective particle-field dynamics and Berry curvature(2017-04-23) Watson, AB; Lu, J; Weinstein, MIWe consider a model of an electron in a crystal moving under the influence of an external electric field: Schr\"{o}dinger's equation with a potential which is the sum of a periodic function and a general smooth function. We identify two dimensionless parameters: (re-scaled) Planck's constant and the ratio of the lattice spacing to the scale of variation of the external potential. We consider the special case where both parameters are equal and denote this parameter $\epsilon$. In the limit $\epsilon \downarrow 0$, we prove the existence of solutions known as semiclassical wavepackets which are asymptotic up to `Ehrenfest time' $t \sim \ln 1/\epsilon$. To leading order, the center of mass and average quasi-momentum of these solutions evolve along trajectories generated by the classical Hamiltonian given by the sum of the Bloch band energy and the external potential. We then derive all corrections to the evolution of these observables proportional to $\epsilon$. The corrections depend on the gauge-invariant Berry curvature of the Bloch band, and a coupling to the evolution of the wave-packet envelope which satisfies Schr\"{o}dinger's equation with a time-dependent harmonic oscillator Hamiltonian. This infinite dimensional coupled `particle-field' system may be derived from an `extended' $\epsilon$-dependent Hamiltonian. It is known that such coupling of observables (discrete particle-like degrees of freedom) to the wave-envelope (continuum field-like degrees of freedom) can have a significant impact on the overall dynamics.