Browsing by Subject "connectivity"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access A Connectome Wide Functional Signature of Transdiagnostic Risk for Mental Illness(Biological Psychiatry, 2018-04-10) Elliott, ML; Romer, A; Knodt, AR; Hariri, ARBackground High rates of comorbidity, shared risk, and overlapping therapeutic mechanisms have led psychopathology research towards transdiagnostic dimensional investigations of clustered symptoms. One influential framework accounts for these transdiagnostic phenomena through a single general factor, sometimes referred to as the ‘p’ factor, associated with risk for all common forms of mental illness. Methods Here we build on past research identifying unique structural neural correlates of the p factor by conducting a data-driven analysis of connectome wide intrinsic functional connectivity (n = 605). Results We demonstrate that higher p factor scores and associated risk for common mental illness maps onto hyper-connectivity between visual association cortex and both frontoparietal and default mode networks. Conclusions These results provide initial evidence that the transdiagnostic risk for common forms of mental illness is associated with patterns of inefficient connectome wide intrinsic connectivity between visual association cortex and networks supporting executive control and self-referential processes, networks which are often impaired across categorical disorders.Item Open Access Cross-hemispheric collaboration and segregation associated with task difficulty as revealed by structural and functional connectivity.(J Neurosci, 2015-05-27) Davis, Simon W; Cabeza, RobertoAlthough it is known that brain regions in one hemisphere may interact very closely with their corresponding contralateral regions (collaboration) or operate relatively independent of them (segregation), the specific brain regions (where) and conditions (how) associated with collaboration or segregation are largely unknown. We investigated these issues using a split field-matching task in which participants matched the meaning of words or the visual features of faces presented to the same (unilateral) or to different (bilateral) visual fields. Matching difficulty was manipulated by varying the semantic similarity of words or the visual similarity of faces. We assessed the white matter using the fractional anisotropy (FA) measure provided by diffusion tensor imaging (DTI) and cross-hemispheric communication in terms of fMRI-based connectivity between homotopic pairs of cortical regions. For both perceptual and semantic matching, bilateral trials became faster than unilateral trials as difficulty increased (bilateral processing advantage, BPA). The study yielded three novel findings. First, whereas FA in anterior corpus callosum (genu) correlated with word-matching BPA, FA in posterior corpus callosum (splenium-occipital) correlated with face-matching BPA. Second, as matching difficulty intensified, cross-hemispheric functional connectivity (CFC) increased in domain-general frontopolar cortex (for both word and face matching) but decreased in domain-specific ventral temporal lobe regions (temporal pole for word matching and fusiform gyrus for face matching). Last, a mediation analysis linking DTI and fMRI data showed that CFC mediated the effect of callosal FA on BPA. These findings clarify the mechanisms by which the hemispheres interact to perform complex cognitive tasks.Item Open Access Epidemic potential by sexual activity distributions.(Netw Sci (Camb Univ Press), 2017-12) Moody, James; Adams, Jimi; Morris, MartinaFor sexually transmitted infections like HIV to propagate through a population, there must be a path linking susceptible cases to currently infectious cases. The existence of such paths depends in part on thedegree distribution.Here, we use simulation methods to examine how two features of the degree distribution affect network connectivity: Mean degree captures a volume dimension, while the skewness of the upper tail captures a shape dimension. We find a clear interaction between shape and volume: When mean degree is low, connectivity is greater for long-tailed distributions, but at higher mean degree, connectivity is greater in short-tailed distributions. The phase transition to a giant component and giant bicomponent emerges as a positive function of volume, but it rises more sharply and ultimately reaches more people in short-tail distributions than in long-tail distributions. These findings suggest that any interventions should be attuned to how practices affect both the volume and shape of the degree distribution, noting potential unanticipated effects. For example, policies that primarily affect high-volume nodes may not be effective if they simply redistribute volume among lower degree actors, which appears to exacerbate underlying network connectivity.