# Browsing by Subject "cs.GR"

Now showing 1 - 3 of 3

###### Results Per Page

###### Sort Options

Item Open Access Approximation of Functions over Manifolds: A Moving Least-Squares ApproachSober, B; Aizenbud, Y; Levin, DWe present an algorithm for approximating a function defined over a $d$-dimensional manifold utilizing only noisy function values at locations sampled from the manifold with noise. To produce the approximation we do not require any knowledge regarding the manifold other than its dimension $d$. We use the Manifold Moving Least-Squares approach of (Sober and Levin 2016) to reconstruct the atlas of charts and the approximation is built on-top of those charts. The resulting approximant is shown to be a function defined over a neighborhood of a manifold, approximating the originally sampled manifold. In other words, given a new point, located near the manifold, the approximation can be evaluated directly on that point. We prove that our construction yields a smooth function, and in case of noiseless samples the approximation order is $\mathcal{O}(h^{m+1})$, where $h$ is a local density of sample parameter (i.e., the fill distance) and $m$ is the degree of a local polynomial approximation, used in our algorithm. In addition, the proposed algorithm has linear time complexity with respect to the ambient-space's dimension. Thus, we are able to avoid the computational complexity, commonly encountered in high dimensional approximations, without having to perform non-linear dimension reduction, which inevitably introduces distortions to the geometry of the data. Additionaly, we show numerical experiments that the proposed approach compares favorably to statistical approaches for regression over manifolds and show its potential.Item Open Access DS++: A flexible, scalable and provably tight relaxation for matching problems.(CoRR, 2017) Dym, Nadav; Maron, Haggai; Lipman, YaronCorrespondence problems are often modelled as quadratic optimization problems over permutations. Common scalable methods for approximating solutions of these NP-hard problems are the spectral relaxation for non-convex energies and the doubly stochastic (DS) relaxation for convex energies. Lately, it has been demonstrated that semidefinite programming relaxations can have considerably improved accuracy at the price of a much higher computational cost. We present a convex quadratic programming relaxation which is provably stronger than both DS and spectral relaxations, with the same scalability as the DS relaxation. The derivation of the relaxation also naturally suggests a projection method for achieving meaningful integer solutions which improves upon the standard closest-permutation projection. Our method can be easily extended to optimization over doubly stochastic matrices, partial or injective matching, and problems with additional linear constraints. We employ recent advances in optimization of linear-assignment type problems to achieve an efficient algorithm for solving the convex relaxation. We present experiments indicating that our method is more accurate than local minimization or competing relaxations for non-convex problems. We successfully apply our algorithm to shape matching and to the problem of ordering images in a grid, obtaining results which compare favorably with state of the art methods. We believe our results indicate that our method should be considered the method of choice for quadratic optimization over permutations.Item Open Access Manifold Approximation by Moving Least-Squares Projection (MMLS)(Constructive Approximation) Sober, Barak; Levin, DavidIn order to avoid the curse of dimensionality, frequently encountered in Big Data analysis, there was a vast development in the field of linear and nonlinear dimension reduction techniques in recent years. These techniques (sometimes referred to as manifold learning) assume that the scattered input data is lying on a lower dimensional manifold, thus the high dimensionality problem can be overcome by learning the lower dimensionality behavior. However, in real life applications, data is often very noisy. In this work, we propose a method to approximate $\mathcal{M}$ a $d$-dimensional $C^{m+1}$ smooth submanifold of $\mathbb{R}^n$ ($d \ll n$) based upon noisy scattered data points (i.e., a data cloud). We assume that the data points are located "near" the lower dimensional manifold and suggest a non-linear moving least-squares projection on an approximating $d$-dimensional manifold. Under some mild assumptions, the resulting approximant is shown to be infinitely smooth and of high approximation order (i.e., $O(h^{m+1})$, where $h$ is the fill distance and $m$ is the degree of the local polynomial approximation). The method presented here assumes no analytic knowledge of the approximated manifold and the approximation algorithm is linear in the large dimension $n$. Furthermore, the approximating manifold can serve as a framework to perform operations directly on the high dimensional data in a computationally efficient manner. This way, the preparatory step of dimension reduction, which induces distortions to the data, can be avoided altogether.