Browsing by Subject "double-beta decay"
- Results Per Page
- Sort Options
Item Open Access Double-Beta Decay of 96Zr and Double-Electron Capture of 156Dy to Excited Final States(2015) Finch, SeanTwo separate experimental searches for second-order weak nuclear decays to excited final states were conducted. Both experiments were carried out at the Kimballton Underground Research Facility to provide shielding from cosmic rays. The first search is for the two-neutrino double-beta decay of 96Zr to excited final states of the daughter nucleus, 96Mo. As a by product of this experiment, the beta decay of 96Zr was also investigated. Two coaxial high-purity germanium detectors were used in coincidence to detect gamma rays produced by the daughter nucleus as it de-excited to the ground state. After collecting 1.92 years of data with 17.91 g of enriched 96Zr, half-life limits at the level of 10^20 yr were produced. Measurements of this decay are important to test neutrinoless double-beta decay nuclear matrix element calculations, which are necessary to extract the neutrino mass from a measurement of the neutrinoless double-beta decay half-life.
The second experiment is a search for the resonantly-enhanced neutrinoless double-electron capture decay of 156Dy to excited states in 156Gd. Double-electron capture is a possible experimental alternative to neutrinoless-double beta decay, which could distinguish the Dirac or Majorana nature of the neutrino. Two clover high-purity germanium detectors were used in coincidence to investigate the decay. A 213.5 mg enriched 156Dy sample was observed for 0.635 year, producing half-life limits of 10^17 yr. The limits produced by both of these experiments are currently the most stringent limits available for these decays.
Item Open Access Double-Beta Decay of 150Nd to Excited Final States(2010) Kidd, Mary FrancesAn experimental study of the two-neutrino double-beta (2νββ) decay of 150Nd to various excited final states of 150Sm was performed at Triangle Universities Nuclear Laboratory (TUNL). Such data provide important checks for theoretical models used to predict 0νββ decay half lives.
The measurement was performed at the recently established Kimballton Underground Research Facility (KURF) in Ripplemeade, Virginia using the TUNL-ITEP double-beta decay setup. In this setup, two high-purity germanium detectors were operated in coincidence to detect the deexcitation gamma rays of the daughter nucleus. This coincidence technique, along with the location underground, provides a considerable reduction in background in the regions of interest.
This study yields the first results from KURF and the first detection of the
coincidence gamma rays from the 0+1 excited state of 150Sm. These gamma rays
have energies of 334.0 keV and 406.5 keV, and are emitted in coincidence through a 0+1→2+1→0+gs transition. The enriched Nd2O3 sample obtained from Oak Ridge
National Laboratory consists of 40.13 g 150Nd. This sample was observed for 391 days, producing 29 raw events in the region of interest. This count rate gives a half life of T1/2 = (0.72+0.36−0.18 ± 0.04(syst.)) × 1020 years, which agrees within error with
another recent measurement, in which only the single deexcitation gamma rays were detected (i.e., no coincidence was employed). Lower limits were also obtained for decays to higher excited final states.