Browsing by Subject "ectodomain shedding"
Results Per Page
Sort Options
Item Open Access Ectodomain Shedding of TGF-beta Receptors: Role in Signaling and Breast Cancer Biology(2013) Elderbroom, Jennifer LynnThe transforming growth factor beta (TGF-beta) signaling pathway is a critical regulator of multiple biological processes that are involved in cancer progression, such as proliferation, migration, invasion and metastasis. TGF-beta ligands bind to multiple high-affinity receptors (TbetaRI, TbetaRII, TbetaRIII), whose expression on the cell surface, and subsequent ability to transduce signaling, can be modulated by ectodomain shedding.
TbetaRIII, also known as betaglycan, is the most abundantly expressed TGF-beta receptor. TbetaRIII suppresses breast cancer progression through inhibiting migration, invasion, metastasis, and angiogenesis. TbetaRIII binds TGF-beta ligands, with membrane-bound TbetaRIII presenting ligand to enhance TGF-beta signaling. However, TbetaRIII can also undergo ectodomain shedding, releasing soluble TbetaRIII, which binds and sequesters ligand to inhibit downstream signaling. To investigate the relative contributions of soluble and membrane-bound TbetaRIII on TGF-beta signaling and breast cancer biology, here I describe TbetaRIII mutants with impaired (Delta-Shed-TbetaRIII) or enhanced ectodomain shedding (SS-TbetaRIII). Relative to wild-type (WT)-TbetaRIII, Delta-Shed-TbetaRIII increased TGF-beta signaling and blocked TbetaRIII's ability to inhibit breast cancer cell migration and invasion. Conversely, SS-TbetaRIII, which increased soluble TbetaRIII production, decreased TGF-beta signaling and increased TbetaRIII-mediated inhibition of breast cancer cell migration and invasion.
TbetaRI is released from the cell surface by a common sheddase of the A disintegrin and metalloproteinase (ADAM) family, ADAM17. This shedding event results in a downregulation of TGF-beta signaling. Here, I present evidence that a closely related protease, ADAM10, may be a novel sheddase for TbetaRI. A specific ADAM10 inhibitor was able to increase cell surface expression of TbetaRI, and decrease levels of circulating soluble TbetaRI in vivo. Interestingly, inhibition of ADAM10 concurrently increased shedding of TbetaRIII, and was able to alter TGF-beta signaling in a TbetaRIII-dependent manner.
Together, these studies suggest that ectodomain shedding of TGF-beta receptors is an important determinant for regulation of TGF-beta-mediated signaling and biology.
Item Open Access Role of Type III TGF-β Receptor Shedding in Regulating Tumorigenesis(2019) Huang, Jennifer J.The type III TGF-β receptor (TβRIII) is a TGF-β co-receptor that presents ligand to the type II TGF-β receptor to initiate signaling. TβRIII also undergoes ectodomain shedding to release a soluble form (sTβRIII) that can bind ligand, sequestering it away from cell surface receptors. We have previously identified a TβRIII extracellular mutant that has enhanced ectodomain shedding (“super shedding (SS)” – TβRIII-SS). Here we utilize TβRIII-SS to study the balance of cell surface and soluble TβRIII in the context of lung cancer. We demonstrate that expressing TβRIII-SS in lung cancer cell models induces epithelial-mesenchymal transition (EMT) and that these TβRIII-SS (EMT) cells are less migratory, invasive and adhesive and more resistance to gemcitabine. Moreover, TβRIII-SS (EMT) cells exhibit decreased tumorigenicity but increased tumor growth in vitro and in vivo. These studies suggest that the balance of cell surface and soluble TβRIII may regulate a dichotomous role for TβRIII during cancer progression.
We have also demonstrated that cathepsin G and neutrophil elastase, proteases stored in the azurophil granules of neutrophils, can induce cleavage of cell surface TβRIII though no functional sTβRIII was detected. Similarly, activated neutrophils could induce TβRIII shedding on cancer cells. Interestingly, neutrophils generate sTβRIII that is resistant to shedding. These studies suggest that neutrophils may modulate the balance of cell surface and soluble TβRIII in the tumor microenvironment.