Browsing by Subject "error"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Preliminary-Test Estimation of the Error Variance in Linear Regression(1987-08) Clarke, Judith A; Giles, David EA; Wallace, DudleyWe derive exact finite-sample expressions for the biases and risks of several common pretest estimators of the scale parameter in the linear regression model. These estimators are associated with least squares, maximum likelihood and minimum mean squared error component estimators. Of these three criteria, the last is found to be superior (in terms of risk under quadratic loss) when pretesting in typical situations.Item Restricted The Use of Error Components Models in Combining Cross Section with Time Series Data(1969) Wallace, Dudley; Hussain, AshiqA mixed model of regression with error components is proposed as one of possible interest for combining cross section and time series data. For known variances, it is shown that Aitken estimators and covariance estimators are in one sense asymptotically equivalent, even though the Aitken estimators are more efficient in small samples. Turning to unknown variance components, Zellner-type iterative estimators are compared with covariance estimators. Here, few small sample properties are obtained. However, it is shown that covariance and Zellner-type estimators have equivalent asymptotic distributions and equivalent limits of sequences of first and second order moments for weakly nonstochastic regressors. For the model analyzed, the theoretical results obtained, as well as ease of computation, tend to support traditional covariance estimators of the regression parameters. An additional interesting result presented in an appendix is that ordinary least squares estimates of the β's (ignoring the error components) have unbounded asymptotic variances. On efficiency grounds, this argues rather strongly for some care in combining data from alternative sources in regression analysis.