Browsing by Subject "erythrocyte"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Open Access Pannexin 1 Channels Control the Hemodynamic Response to Hypoxia by Regulating O2-Sensitive Extracellular ATP in Blood.(American journal of physiology. Heart and circulatory physiology, 2021-01-15) Kirby, Brett S; Sparks, Matthew A; Lazarowski, Eduardo R; Lopez Domowicz, Denise A; Zhu, Hongmei; McMahon, Timothy JPannexin1 (Panx1) channels export ATP and may contribute to increased concentration of the vasodilator ATP in plasma during hypoxia in vivo. We hypothesized that Panx1 channels and associated ATP export contributes to hypoxic vasodilation, a mechanism that facilitates the matching of oxygen delivery to tissue metabolic demand. Male and female mice devoid of Panx1 (Panx1-/-) and wild-type controls (WT) were anesthetized, mechanically ventilated, and instrumented with a carotid artery catheter or femoral artery flow transducer for hemodynamic and plasma ATP monitoring during inhalation of 21% (normoxia) or 10% oxygen (hypoxia). ATP export from WT vs. Panx1-/- erythrocytes (RBC) was determined ex vivo via tonometer experimentation across progressive deoxygenation. Mean arterial pressure (MAP) was similar in Panx1-/- (N=6) and WT (N=6) mice in normoxia, but the decrease in MAP in hypoxia seen in WT was attenuated in Panx1-/- mice (-16±9% vs -2±8%; P<0.05). Hindlimb blood flow (HBF) was significantly lower in Panx1-/- (N=6) vs. WT (N=6) basally, and increased in WT but not Panx1-/- mice during hypoxia (8±6% vs -10±13%; P<0.05). Estimation of hindlimb vascular conductance using data from the MAP and HBF experiments showed an average response of 28% for WT vs -9% for Panx1-/- mice. Mean venous plasma ATP during hypoxia was 57% lower in Panx1-/- (N=6) vs WT mice (N=6) (P<0.05). Mean hypoxia-induced ATP export from RBCs from Panx1-/- mice (N=8) was 82% lower than from WT (N=8) ( P<0.05). Panx1 channels participate in hemodynamic responses consistent with hypoxic vasodilation by regulating hypoxia-sensitive extracellular ATP levels in blood.