Browsing by Subject "fibrosis"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Characterization of the Foreign Body Response to Common Surgical Biomaterials in a Murine Model.(European journal of plastic surgery, 2017-11) Ibrahim, Mohamed; Bond, Jennifer; Medina, Manuel A; Chen, Lei; Quiles, Carlos; Kokosis, George; Bashirov, Latif; Klitzman, Bruce; Levinson, HowardBACKGROUND:Implanted biomaterials are subject to a significant reaction from the host, known as the foreign body response (FBR). We quantified the FBR to five materials following subcutaneous implantation in mice. MATERIALS AND METHODS:Polyvinyl alcohol (PVA) and silicone sheets are considered highly biocompatible biomaterials and were cut into 8mm-diameter disks. Expanded PTFE (ePTFE)and polypropylene are also widely used biocompatible biomaterials and were cut into 2cm-long cylinders. Cotton was selected as a negative control material that would invoke an intense FBR, was cut into disks and implanted. The implants were inserted subcutaneously into female C57BL/6 mice. On post-implantation days 14, 30, 60, 90 and 180, implants were retrieved. Cellularity was assessed with DAPI stain, collagen with Masson's trichrome stain. mast cells with toluidine-blue, macrophages with F4/80 immunohistochemical-stain, and capsular thickness and foreign body giant cells with hematoxylin & eosin. RESULTS:DAPI revealed a significantly increased cellularity in both PVA andsilicone, and ePTFE had the lowest cell density. Silicone showed the lowest cellularity at d14 and d90 whereas ePTFE showed the lowest cellularity at days 30, 60, and 180. Masson's trichrome staining demonstrated no apparent difference in collagen. Toluidine blue showed no differences in mast cells. There were, however, fewer macrophages associated with ePTFE. On d14, PVA had highest number of macrophages, whereas polypropylene had the highest number at all time points after d14. Giant cells increased earlier and gradually decreased later. On d90, PVA exhibited a significantly increased number of giant cells compared to polypropylene and silicone. Silicone consistently formed the thinnest capsule throughout all time points. On d14, cotton had formed the thickest capsule. On d30 polypropylenehas formed thickest capsule and on days 60, 90 and 180, PVA had formed thickest capsule. CONCLUSION:These data reveal differences in capsule thickness and cellular response in an implant-related manor, indicating that fibrotic reactions to biomaterials are implant specific and should be carefully considered when performing studies on fibrosis when biomaterials are being used.Item Open Access Does hand stiffness reflect internal organ fibrosis in diabetes mellitus?(Frontiers in clinical diabetes and healthcare, 2023-01) Phatak, Sanat; Ingram, Jennifer L; Goel, Pranay; Rath, Satyajit; Yajnik, ChittaranjanFibrosis leads to irreversible stiffening of tissue and loss of function, and is a common pathway leading to morbidity and mortality in chronic disease. Diabetes mellitus (both type 1 and type 2 diabetes) are associated with significant fibrosis in internal organs, chiefly the kidney and heart, but also lung, liver and adipose tissue. Diabetes is also associated with the diabetic cheirarthropathies, a collection of clinical manifestations affecting the hand that include limited joint mobility (LJM), flexor tenosynovitis, Duypuytren disease and carpal tunnel syndrome. Histo-morphologically these are profibrotic conditions affecting various soft tissue components in the hand. We hypothesize that these hand manifestations reflect a systemic profibrotic state, and are potential clinical biomarkers of current or future internal organ fibrosis. Epidemiologically, there is evidence that fibrosis in one organ associates with fibrosis with another; the putative exposures that lead to fibrosis in diabetes (advanced glycation end product deposition, microvascular disease and hypoxia, persistent innate inflammation) are 'systemic'; a common genetic susceptibility to fibrosis has also been hinted at. These data suggest that a subset of the diabetic population is susceptible to multi-organ fibrosis. The hand is an attractive biomarker to clinically detect this susceptibility, owing to its accessibility to physical examination and exposure to repeated mechanical stresses. Testing the hypothesis has a few pre-requisites: being able to measure hand fibrosis in the hand, using clinical scores or imaging based scores, which will facilitate looking for associations with internal organ fibrosis using validated methodologies for each. Longitudinal studies would be essential in delineating fibrosis trajectories in those with hand manifestations. Since therapies reversing fibrosis are few, the onus lies on identification of a susceptible subset for preventative measures. If systematically validated, clinical hand examination could provide a low-cost, universally accessible and easily reproducible screening step in selecting patients for clinical trials for fibrosis in diabetes.Item Open Access Experimental inhibition of porcupine-mediated Wnt O-acylation attenuates kidney fibrosis.(Kidney Int, 2016-05) Madan, Babita; Patel, Mehul B; Zhang, Jiandong; Bunte, Ralph M; Rudemiller, Nathan P; Griffiths, Robert; Virshup, David M; Crowley, Steven DActivated Wnt signaling is critical in the pathogenesis of renal fibrosis, a final common pathway for most forms of chronic kidney disease. Therapeutic intervention by inhibition of individual Wnts or downstream Wnt/β-catenin signaling has been proposed, but these approaches do not interrupt the functions of all Wnts nor block non-canonical Wnt signaling pathways. Alternatively, an orally bioavailable small molecule, Wnt-C59, blocks the catalytic activity of the Wnt-acyl transferase porcupine, and thereby prevents secretion of all Wnt isoforms. We found that inhibiting porcupine dramatically attenuates kidney fibrosis in the murine unilateral ureteral obstruction model. Wnt-C59 treatment similarly blunts collagen mRNA expression in the obstructed kidney. Consistent with its actions to broadly arrest Wnt signaling, porcupine inhibition reduces expression of Wnt target genes and bolsters nuclear exclusion of β-catenin in the kidney following ureteral obstruction. Importantly, prevention of Wnt secretion by Wnt-C59 blunts expression of inflammatory cytokines in the obstructed kidney that otherwise provoke a positive feedback loop of Wnt expression in collagen-producing fibroblasts and epithelial cells. Thus, therapeutic targeting of porcupine abrogates kidney fibrosis not only by overcoming the redundancy of individual Wnt isoforms but also by preventing upstream cytokine-induced Wnt generation. These findings reveal a novel therapeutic maneuver to protect the kidney from fibrosis by interrupting a pathogenic crosstalk loop between locally generated inflammatory cytokines and the Wnt/β-catenin signaling pathway.Item Open Access The clinical utility of FibroScan(®) as a noninvasive diagnostic test for liver disease.(Med Devices (Auckl), 2014) Wilder, Julius; Patel, KeyurAn important aspect of managing chronic liver disease is assessing for evidence of fibrosis. Historically, this has been accomplished using liver biopsy, which is an invasive procedure associated with risk for complications and significant sampling and observer error, limiting the accuracy for determination of fibrosis stage. Hence, several serum biomarkers and imaging methods for noninvasive assessment of liver fibrosis have been developed. In this article, we review the current literature on an important noninvasive imaging modality to measure tissue elastography (FibroScan(®)). This ultrasound-based technique is now increasingly available in many countries and has been shown to be a reliable and safe noninvasive means of assessing disease severity in chronic liver disease of varying etiology.