Browsing by Subject "gene therapy"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item Open Access A Novel Gene Therapy Approach for GSD III Using an AAV Vector Encoding a Bacterial Glycogen Debranching Enzyme.(Molecular therapy. Methods & clinical development, 2020-09) Lim, Jeong-A; Choi, Su Jin; Gao, Fengqin; Kishnani, Priya S; Sun, BaodongGlycogen storage disease type III (GSD III) is an inherited disorder caused by a deficiency of glycogen debranching enzyme (GDE), which results in the accumulation of abnormal glycogen (limit dextrin) in the cytoplasm of liver, heart, and skeletal muscle cells. Currently, there is no curative treatment for this disease. Gene therapy with adeno-associated virus (AAV) provides an optimal treatment approach for monogenic diseases like GSD III. However, the 4.6 kb human GDE cDNA is too large to be packaged into a single AAV vector due to its small carrying capacity. To overcome this limitation, we tested a new gene therapy approach in GSD IIIa mice using an AAV vector ubiquitously expressing a smaller bacterial GDE, Pullulanase, whose cDNA is 2.2 kb. Intravenous injection of the AAV vector (AAV9-CB-Pull) into 2-week-old GSD IIIa mice blocked glycogen accumulation in both cardiac and skeletal muscles, but not in the liver, accompanied by the improvement of muscle functions. Subsequent treatment with a liver-restricted AAV vector (AAV8-LSP-Pull) reduced liver glycogen content by 75% and reversed hepatic fibrosis while maintaining the effect of AAV9-CB-Pull treatment on heart and skeletal muscle. Our results suggest that AAV-mediated gene therapy with Pullulanase is a possible treatment for GSD III.Item Open Access Adjunctive β2-agonist treatment reduces glycogen independently of receptor-mediated acid α-glucosidase uptake in the limb muscles of mice with Pompe disease.(FASEB J, 2014-05) Farah, Benjamin L; Madden, Lauran; Li, Songtao; Nance, Sierra; Bird, Andrew; Bursac, Nenad; Yen, Paul M; Young, Sarah P; Koeberl, Dwight DEnzyme or gene replacement therapy with acid α-glucosidase (GAA) has achieved only partial efficacy in Pompe disease. We evaluated the effect of adjunctive clenbuterol treatment on cation-independent mannose-6-phosphate receptor (CI-MPR)-mediated uptake and intracellular trafficking of GAA during muscle-specific GAA expression with an adeno-associated virus (AAV) vector in GAA-knockout (KO) mice. Clenbuterol, which increases expression of CI-MPR in muscle, was administered with the AAV vector. This combination therapy increased latency during rotarod and wirehang testing at 12 wk, in comparison with vector alone. The mean urinary glucose tetrasaccharide (Glc4), a urinary biomarker, was lower in GAA-KO mice following combination therapy, compared with vector alone. Similarly, glycogen content was lower in cardiac and skeletal muscle following 12 wk of combination therapy in heart, quadriceps, diaphragm, and soleus, compared with vector alone. These data suggested that clenbuterol treatment enhanced trafficking of GAA to lysosomes, given that GAA was expressed within myofibers. The integral role of CI-MPR was demonstrated by the lack of effectiveness from clenbuterol in GAA-KO mice that lacked CI-MPR in muscle, where it failed to reverse the high glycogen content of the heart and diaphragm or impaired wirehang performance. However, the glycogen content of skeletal muscle was reduced by the addition of clenbuterol in the absence of CI-MPR, as was lysosomal vacuolation, which correlated with increased AKT signaling. In summary, β2-agonist treatment enhanced CI-MPR-mediated uptake and trafficking of GAA in mice with Pompe disease, and a similarly enhanced benefit might be expected in other lysosomal storage disorders.Item Open Access An emerging phenotype of central nervous system involvement in Pompe disease: from bench to bedside and beyond.(Annals of translational medicine, 2019-07) Korlimarla, Aditi; Lim, Jeong-A; Kishnani, Priya S; Sun, BaodongPompe disease (PD) is a lysosomal storage disorder caused by deficiency of the lysosomal enzyme acid-alpha glucosidase (GAA). Pathogenic variants in the GAA gene lead to excessive accumulation of lysosomal glycogen primarily in the cardiac, skeletal, and smooth muscles. There is growing evidence of central nervous system (CNS) involvement in PD. Current research is focused on determining the true extent of CNS involvement, its effects on behavior and cognition, and effective therapies that would correct the disease in both muscle and the CNS. This review article summarizes the CNS findings in patients, highlights the importance of research on animal models, explores the probable success of gene therapy in reversing CNS pathologies as reported by some breakthrough preclinical studies, and emphasizes the need to follow patients and monitor for CNS involvement over time. Lessons learned from animal models (bench) and from the literature available to date on patients will guide future clinical trials in patients (bedside) with PD. Our preliminary studies in infantile PD show that some patients are susceptible to early and extensive CNS pathologies, as assessed by neuroimaging and developmental assessments. This article highlights the importance of neuroimaging which could serve as useful tools to diagnose and monitor certain CNS pathologies such as white matter hyperintense foci (WMF) in the brain. Longitudinal studies with large sample sizes are warranted at this time to better understand the emergence, progression and consequences of CNS involvement in patients with PD.Item Open Access Bezafibrate Enhances AAV Vector-Mediated Genome Editing in Glycogen Storage Disease Type Ia.(Molecular therapy. Methods & clinical development, 2019-06) Kang, Hye-Ri; Waskowicz, Lauren; Seifts, Andrea M; Landau, Dustin J; Young, Sarah P; Koeberl, Dwight DGlycogen storage disease type Ia (GSD Ia) is a rare inherited disease caused by mutations in the glucose-6-phosphatase (G6Pase) catalytic subunit gene (G6PC). Absence of G6Pase causes life-threatening hypoglycemia and long-term complications because of the accumulations of metabolic intermediates. Bezafibrate, a pan-peroxisome proliferator-activated receptor (PPAR) agonist, was administered in the context of genome editing with a zinc-finger nuclease-containing vector (AAV-ZFN) and a G6Pase donor vector (AAV-RoG6P). Bezafibrate treatment increased survival and decreased liver size (liver/body mass, p < 0.05) in combination with genome editing. Blood glucose has higher (p < 0.05) after 4 h of fasting, and liver glycogen accumulation (p < 0.05) was lower in association with higher G6Pase activity (p < 0.05). Furthermore, bezafibrate-treated mice had increased numbers of G6PC transgenes (p < 0.05) and higher ZFN activity (p < 0.01) in the liver compared with controls. PPAR-α expression was increased and PPAR-γ expression was decreased in bezafibrate-treated mice. Therefore, bezafibrate improved hepatocellular abnormalities and increased the transduction efficiency of AAV vector-mediated genome editing in liver, whereas higher expression of G6Pase corrected molecular signaling in GSD Ia. Taken together, bezafibrate shows promise as a drug for increasing AAV vector-mediated genome editing.Item Open Access Intracoronary Adenovirus-Mediated Delivery and Overexpression of the β2-Adrenergic Receptor in the Heart(2000-02) Shah, AS; Lilly, RE; Kypson, AP; Tai, O; Hata, JA; Pippen, A; Silvestry, SC; Lefkowitz, RJ; Glower, DD; Koch, WJBackground—Genetic modulation of ventricular function may offer a novel therapeutic strategy for patients with congestive heart failure. Myocardial overexpression of β2-adrenergic receptors (β2ARs) has been shown to enhance contractility in transgenic mice and reverse signaling abnormalities found in failing cardiomyocytes in culture. In this study, we sought to determine the feasibility and in vivo consequences of delivering an adenovirus containing the human β2AR cDNA to ventricular myocardium via catheter-mediated subselective intracoronary delivery. Methods and Results—Rabbits underwent percutaneous subselective catheterization of either the left or right coronary artery and infusion of adenoviral vectors containing either a marker transgene (Adeno-βGal) or the β2AR (Adeno-β2AR). Ventricular function was assessed before catheterization and 3 to 6 days after gene delivery. Both left circumflex– and right coronary artery–mediated delivery of Adeno-β2AR resulted in ≈10-fold overexpression in a chamber-specific manner. Delivery of Adeno-βGal did not alter in vivo left ventricular (LV) systolic function, whereas overexpression of β2ARs in the LV improved global LV contractility, as measured by dP/dtmax, at baseline and in response to isoproterenol at both 3 and 6 days after gene delivery. Conclusions—Percutaneous adenovirus-mediated intracoronary delivery of a potentially therapeutic transgene is feasible, and acute global LV function can be enhanced by LV-specific overexpression of the β2AR. Thus, genetic modulation to enhance the function of the heart may represent a novel therapeutic strategy for congestive heart failure and can be viewed as molecular ventricular assistance.Item Open Access Intravenous Injection of an AAV-PHP.B Vector Encoding Human Acid α-Glucosidase Rescues Both Muscle and CNS Defects in Murine Pompe Disease.(Molecular therapy. Methods & clinical development, 2019-03) Lim, Jeong-A; Yi, Haiqing; Gao, Fengqin; Raben, Nina; Kishnani, Priya S; Sun, BaodongPompe disease, a severe and often fatal neuromuscular disorder, is caused by a deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA). The disease is characterized by the accumulation of excess glycogen in the heart, skeletal muscle, and CNS. Currently approved enzyme replacement therapy or experimental adeno-associated virus (AAV)-mediated gene therapy has little effect on CNS correction. Here we demonstrate that a newly developed AAV-PHP.B vector can robustly transduce both the CNS and skeletal muscles in GAA-knockout (GAAKO) mice. A single intravenous injection of an AAV-PHP.B vector expressing human GAA under the control of cytomegalovirus (CMV) enhancer-chicken β-actin (CB) promoter into 2-week-old GAAKO mice resulted in widespread GAA expression in the affected tissues. Glycogen contents were reduced to wild-type levels in the brain and heart, and they were significantly decreased in skeletal muscle by the AAV treatment. The histological assay showed no visible glycogen in any region of the brain and spinal cord of AAV-treated mice. In this study, we describe a set of behavioral tests that can detect early neurological deficits linked to extensive lysosomal glycogen accumulation in the CNS of untreated GAAKO mice. Furthermore, we demonstrate that the therapy can help prevent the development of these abnormalities.Item Open Access Systemic Correction of Murine Glycogen Storage Disease Type IV by an AAV-Mediated Gene Therapy.(Hum Gene Ther, 2017-03) Yi, Haiqing; Zhang, Quan; Brooks, Elizabeth D; Yang, Chunyu; Thurberg, Beth L; Kishnani, Priya S; Sun, BaodongDeficiency of glycogen branching enzyme (GBE) causes glycogen storage disease type IV (GSD IV), which is characterized by the accumulation of a less branched, poorly soluble form of glycogen called polyglucosan (PG) in multiple tissues. This study evaluates the efficacy of gene therapy with an adeno-associated viral (AAV) vector in a mouse model of adult form of GSD IV (Gbe1(ys/ys)). An AAV serotype 9 (AAV9) vector containing a human GBE expression cassette (AAV-GBE) was intravenously injected into 14-day-old Gbe1(ys/ys) mice at a dose of 5 × 10(11) vector genomes per mouse. Mice were euthanized at 3 and 9 months of age. In the AAV-treated mice at 3 months of age, GBE enzyme activity was highly elevated in heart, which is consistent with the high copy number of the viral vector genome detected. GBE activity also increased significantly in skeletal muscles and the brain, but not in the liver. The glycogen content was reduced to wild-type levels in muscles and significantly reduced in the liver and brain. At 9 months of age, though GBE activity was only significantly elevated in the heart, glycogen levels were significantly reduced in the liver, brain, and skeletal muscles of the AAV-treated mice. In addition, the AAV treatment resulted in an overall decrease in plasma activities of alanine transaminase, aspartate transaminase, and creatine kinase, and a significant increase in fasting plasma glucose concentration at 9 months of age. This suggests an alleviation of damage and improvement of function in the liver and muscles by the AAV treatment. This study demonstrated a long-term benefit of a systemic injection of an AAV-GBE vector in Gbe1(ys/ys) mice.