Browsing by Subject "germ cell"
Results Per Page
Sort Options
Item Open Access Hijacking Germ Cells for Cancer: Examining a 'Dead End' in Male Germ Cell Development(2010) Cook, Matthew SimonGerm cells represent the immortal line: they are guardians of a totipotent genome and are essential for the genetic survival of an individual organism and ultimately a species. An error at any stage in development (specification, migration, colonization, differentiation, adult maintenance) can lead to one of two disastrous outcomes: (1) germ cell death or (2) unchecked growth and proliferation leading to tumorigenesis. The work in this dissertation utilizes a classic mouse model (Ter) resulting in both of these phenotypes to further explore the molecular mechanisms important for development of germ cells.
A homozygous nonsense mutation (Ter) in murine Dnd1 (Dnd1Ter/Ter) results in a significant (but not complete) early loss of primordial germ cells (PGCs) prior to colonization of the gonad in both sexes and all genetic backgrounds tested. The same mutation also leads to testicular teratomas only on the 129/SvJ background. Male mutants on other genetic backgrounds ultimately lose all PGCs with no incidence of teratoma formation. It is not clear how these PGCs are lost, develop into teratomas, or what factors directly control the strain-specific phenotype variation.
Work here demonstrates that Dnd1 expression is restricted to germ cells and that the Ter mutant defect is cell autonomous. The early loss of germ cells is due in part to BAX–mediated apoptosis which also affects the incidence of tumorigenesis on a mixed genetic background. Moreover, tumor formation is-specific to the male developmental pathway and not dependent on sex chromosome composition of the germ cell (XX vs. XY). Despite normal initiation of the male somatic pathway, mutant germ cells fail to differentiate as pro–spermatogonia and instead prematurely enter meiosis.
Results here also reveal that, on a 129/SvJ background, many mutant germ cells fail to commit to the male differentiation pathway, instead maintain expression of the pluripotency markers, NANOG, SOX2, and OCT4, and initiate teratoma formation at the stage when male germ cells normally enter mitotic arrest. RNA immunoprecipitation experiments reveal that mouse DND1 directly binds a group of transcripts that encode negative regulators of the cell cycle, including p27Kip1, which is not translated in Dnd1Ter/Ter germ cells. Additionally, overexpression of DND1 in a teratocarcinoma cell line leads to significant alteration of pathways controlling the G1/S checkpoint and the RB tumor suppressor protein. This strongly suggests that DND1 regulates mitotic arrest in male germ cells through regulation of cell cycle genes, serving as a gatekeeper to prevent the activation of a pluripotent program leading to teratoma formation. Furthermore, strain–specific morphological and expression level differences possibly account for sensitivity to tumor development.
Item Open Access Regulation of male germ cell cycle arrest and differentiation by DND1 is modulated by genetic background(2011) Cook, Matthew S; Munger, Steven C; Nadeau, Joseph H; Capel, BlancheHuman germ cell tumors show a strong sensitivity to genetic background similar to Dnd1(Ter/Ter) mutant mice, where testicular teratomas arise only on the 129/SvJ genetic background. The introduction of the Bax mutation onto mixed background Dnd1(Ter/Ter) mutants, where teratomas do not typically develop, resulted in a high incidence of teratomas. However, when Dnd1(Ter/Ter); Bax(-/-) double mutants were backcrossed to C57BL/6J, no tumors arose. Dnd1(Ter/Ter) germ cells show a strong downregulation of male differentiation genes including Nanos2. In susceptible strains, where teratomas initiate around E15.5-E17.5, many mutant germ cells fail to enter mitotic arrest in G0 and do not downregulate the pluripotency markers NANOG, SOX2 and OCT4. We show that DND1 directly binds a group of transcripts that encode negative regulators of the cell cycle, including p27(Kip1) and p21(Cip1). P27(Kip1) and P21(Cip1) protein are both significantly decreased in Dnd1(Ter/Ter) germ cells on all strain backgrounds tested, strongly suggesting that DND1 regulates mitotic arrest in male germ cells through translational regulation of cell cycle genes. Nonetheless, in C57BL/6J mutants, germ cells arrest prior to M-phase of the cell cycle and downregulate NANOG, SOX2 and OCT4. Consistent with their ability to rescue cell cycle arrest, C57BL/6J germ cells overexpress negative regulators of the cell cycle relative to 129/SvJ. This work suggests that reprogramming of pluripotency in germ cells and prevention of tumor formation requires cell cycle arrest, and that differences in the balance of cell cycle regulators between 129/SvJ and C57BL/6 might underlie differences in tumor susceptibility.