Browsing by Subject "healthspan"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Quantification of biological aging in young adults.(Proc Natl Acad Sci U S A, 2015-07-28) Belsky, Daniel W; Caspi, Avshalom; Houts, Renate; Cohen, Harvey J; Corcoran, David L; Danese, Andrea; Harrington, HonaLee; Israel, Salomon; Levine, Morgan E; Schaefer, Jonathan D; Sugden, Karen; Williams, Ben; Yashin, Anatoli I; Poulton, Richie; Moffitt, Terrie EAntiaging therapies show promise in model organism research. Translation to humans is needed to address the challenges of an aging global population. Interventions to slow human aging will need to be applied to still-young individuals. However, most human aging research examines older adults, many with chronic disease. As a result, little is known about aging in young humans. We studied aging in 954 young humans, the Dunedin Study birth cohort, tracking multiple biomarkers across three time points spanning their third and fourth decades of life. We developed and validated two methods by which aging can be measured in young adults, one cross-sectional and one longitudinal. Our longitudinal measure allows quantification of the pace of coordinated physiological deterioration across multiple organ systems (e.g., pulmonary, periodontal, cardiovascular, renal, hepatic, and immune function). We applied these methods to assess biological aging in young humans who had not yet developed age-related diseases. Young individuals of the same chronological age varied in their "biological aging" (declining integrity of multiple organ systems). Already, before midlife, individuals who were aging more rapidly were less physically able, showed cognitive decline and brain aging, self-reported worse health, and looked older. Measured biological aging in young adults can be used to identify causes of aging and evaluate rejuvenation therapies.Item Open Access Uncoupling associations of risk alleles with endophenotypes and phenotypes: insights from the ApoB locus and heart-related traits.(Aging Cell, 2017-02) Kulminski, Alexander M; Kernogitski, Yelena; Culminskaya, Irina; Loika, Yury; Arbeev, Konstantin G; Bagley, Olivia; Duan, Matt; Arbeeva, Liubov; Ukraintseva, Svetlana V; Wu, Deqing; Stallard, Eric; Yashin, Anatoliy ITraditionally, genomewide association studies (GWAS) have emphasized the benefits of large samples in the analyses of age-related traits rather than their specific properties. We adopted a realistic concept of genetic susceptibility to inherently heterogeneous, age-related traits driven by the elusive role of evolution in their properties. We analyzed in detail the associations of rs693 and rs562338 polymorphisms representing the Apolipoprotein B locus with endophenotypes (total cholesterol [TC] and high-density lipoprotein cholesterol) and phenotypes (myocardial infarction [MI] and survival) in four large-scale studies, which include 20 748 individuals with 2357 MI events. We showed that a strong, robust predisposition of rs693 and rs562338 to TC (β = 0.72, P = 7.7 × 10(-30) for rs693 and β = -1.08, P = 9.8 × 10(-42) for rs562338) is not translated into a predisposition to MI and survival. The rs693_A allele influences risks of MI and mortality after MI additively with lipids. This allele shows antagonistic effects-protecting against MI risks (β = -0.18, P = 1.1 × 10(-5) ) or increasing MI risks (β = 0.15, P = 2.8 × 10(-3) ) and mortality after MI, in different populations. Paradoxically, increased TC concentrations can be protective against MI for the rs693_A allele carriers. Our results uncouple the influences of the same alleles on endophenotypes and phenotypes despite potential causal relationships among the latter. Our strategy reveals virtually genomewide significance for the associations of rs693 with MI (P = 5.5 × 10(-8) ) that is contrasted with a weak estimate following the traditional, sample-size-centered GWAS strategy (P = 0.16) in the same sample. These results caution against the use of the traditional GWAS strategy for gaining profound insights into genetic predisposition to healthspan and lifespan.