Browsing by Subject "hemophilia"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access An activated factor VII variant with enhanced tissue factor-independent activity speeds wound healing in a mouse hemophilia B model.(J Thromb Haemost, 2016-06) Hoffman, M; Chang, J-Y; Ezban, M; Monroe, DMUNLABELLED: Essentials Disorders of hemostasis can lead to delayed and defective wound healing. In hemophilia B (HB) mice, 7 days of Factor (F)IX or VIIa are needed to normalize wound healing. One dose of a highly active FVIIa variant (DVQ) restored normal wound closure time in HB mice. Coagulation factors with enhanced activity may acquire biological effects not due to hemostasis. SUMMARY: Introduction We have previously reported that hemophilia B (HB) mice have delayed healing of cutaneous wounds and alterations in wound histology. Administration of a single dose of either factor IX or recombinant activated FVII (rFVIIa) (NovoSeven) prior to wounding did not improve wound closure time or histology. The FVIIa analog DVQ (V158D, E296V and M298Q mutations) was designed to have higher tissue factor-independent activity than rVIIa. We hypothesized that a single dose of DVQ would be more effective in restoring wound healing in HB mice. Methods Cutaneous punch wounds were made on the backs of HB and wild-type mice, and the time to wound closure was monitored. HB mice were treated with a dose of rFVIIa (10 mg kg(-1) ) or DVQ (1 mg kg(-1) ) that corrected the tail bleeding time. Skin samples were taken at various time points after wounding, fixed, and stained, and the histology was examined. Results As previously reported, wound closure times in HB mice given one dose of rFVIIa were not improved over those in untreated HB mice. Surprisingly, healing times in HB mice treated with an equally hemostatic dose of DVQ were normalized to that in wild-type mice. However, DVQ did not correct all histologic abnormalities in HB mice. Conclusions As the doses of DVQ and rFVIIa were chosen to support comparable levels of hemostasis, our data suggest that the improved healing seen with DVQ is not solely attributable to its hemostatic activity. It is possible that the improved wound healing arises through the effect of DVQ on cell signaling mechanisms.Item Open Access Blood flow controls coagulation onset via the positive feedback of factor VII activation by factor Xa(2010) Shibeko, Alexey M; Lobanova, Ekaterina S; Panteleev, Mikhail A; Ataullakhanov, Fazoil IBackground: Blood coagulation is a complex network of biochemical reactions, which is peculiar in that it is time- and space-dependent, and has to function in the presence of rapid flow. Recent experimental reports suggest that flow plays a significant role in its regulation. The objective of this study was to use systems biology techniques to investigate this regulation and to identify mechanisms creating a flow-dependent switch in the coagulation onset. Results: Using a detailed mechanism-driven model of tissue factor (TF)-initiated thrombus formation in a two-dimensional channel we demonstrate that blood flow can regulate clotting onset in the model in a threshold-like manner, in agreement with existing experimental evidence. Sensitivity analysis reveals that this is achieved due to a combination of the positive feedback of TF-bound factor VII activation by activated factor X (Xa) and effective removal of factor Xa by flow from the activating patch depriving the feedback of "ignition". The level of this trigger (i.e. coagulation sensitivity to flow) is controlled by the activity of tissue factor pathway inhibitor. Conclusions: This mechanism explains the difference between red and white thrombi observed in vivo at different shear rates. It can be speculated that this is a special switch protecting vascular system from uncontrolled formation and spreading of active coagulation factors in vessels with rapidly flowing blood.