Browsing by Subject "human"
Now showing 1 - 12 of 12
- Results Per Page
- Sort Options
Item Open Access A long non-coding RNA targets microRNA miR-34a to regulate colon cancer stem cell asymmetric division.(Elife, 2016-04-14) Wang, Lihua; Bu, Pengcheng; Ai, Yiwei; Srinivasan, Tara; Chen, Huanhuan Joyce; Xiang, Kun; Lipkin, Steven M; Shen, XilingThe roles of long non-coding RNAs (lncRNAs) in regulating cancer and stem cells are being increasingly appreciated. Its diverse mechanisms provide the regulatory network with a bigger repertoire to increase complexity. Here we report a novel LncRNA, Lnc34a, that is enriched in colon cancer stem cells (CCSCs) and initiates asymmetric division by directly targeting the microRNA miR-34a to cause its spatial imbalance. Lnc34a recruits Dnmt3a via PHB2 and HDAC1 to methylate and deacetylate the miR-34a promoter simultaneously, hence epigenetically silencing miR-34a expression independent of its upstream regulator, p53. Lnc34a levels affect CCSC self-renewal and colorectal cancer (CRC) growth in xenograft models. Lnc34a is upregulated in late-stage CRCs, contributing to epigenetic miR-34a silencing and CRC proliferation. The fact that lncRNA targets microRNA highlights the regulatory complexity of non-coding RNAs (ncRNAs), which occupy the bulk of the genome.Item Open Access A phylogenetic transform enhances analysis of compositional microbiota data.(Elife, 2017-02-15) Silverman, Justin D; Washburne, Alex D; Mukherjee, Sayan; David, Lawrence ASurveys of microbial communities (microbiota), typically measured as relative abundance of species, have illustrated the importance of these communities in human health and disease. Yet, statistical artifacts commonly plague the analysis of relative abundance data. Here, we introduce the PhILR transform, which incorporates microbial evolutionary models with the isometric log-ratio transform to allow off-the-shelf statistical tools to be safely applied to microbiota surveys. We demonstrate that analyses of community-level structure can be applied to PhILR transformed data with performance on benchmarks rivaling or surpassing standard tools. Additionally, by decomposing distance in the PhILR transformed space, we identified neighboring clades that may have adapted to distinct human body sites. Decomposing variance revealed that covariation of bacterial clades within human body sites increases with phylogenetic relatedness. Together, these findings illustrate how the PhILR transform combines statistical and phylogenetic models to overcome compositional data challenges and enable evolutionary insights relevant to microbial communities.Item Open Access Antibiotic-induced changes in the microbiota disrupt redox dynamics in the gut.(eLife, 2018-06-19) Reese, Aspen T; Cho, Eugenia H; Klitzman, Bruce; Nichols, Scott P; Wisniewski, Natalie A; Villa, Max M; Durand, Heather K; Jiang, Sharon; Midani, Firas S; Nimmagadda, Sai N; O'Connell, Thomas M; Wright, Justin P; Deshusses, Marc A; David, Lawrence AHow host and microbial factors combine to structure gut microbial communities remains incompletely understood. Redox potential is an important environmental feature affected by both host and microbial actions. We assessed how antibiotics, which can impact host and microbial function, change redox state and how this contributes to post-antibiotic succession. We showed gut redox potential increased within hours of an antibiotic dose in mice. Host and microbial functioning changed under treatment, but shifts in redox potentials could be attributed specifically to bacterial suppression in a host-free ex vivo human gut microbiota model. Redox dynamics were linked to blooms of the bacterial family Enterobacteriaceae. Ecological succession to pre-treatment composition was associated with recovery of gut redox, but also required dispersal from unaffected gut communities. As bacterial competition for electron acceptors can be a key ecological factor structuring gut communities, these results support the potential for manipulating gut microbiota through managing bacterial respiration.Item Open Access Bioengineered human myobundles mimic clinical responses of skeletal muscle to drugs.(Elife, 2015-01-09) Madden, Lauran; Juhas, Mark; Kraus, William E; Truskey, George A; Bursac, NenadExisting in vitro models of human skeletal muscle cannot recapitulate the organization and function of native muscle, limiting their use in physiological and pharmacological studies. Here, we demonstrate engineering of electrically and chemically responsive, contractile human muscle tissues ('myobundles') using primary myogenic cells. These biomimetic constructs exhibit aligned architecture, multinucleated and striated myofibers, and a Pax7(+) cell pool. They contract spontaneously and respond to electrical stimuli with twitch and tetanic contractions. Positive correlation between contractile force and GCaMP6-reported calcium responses enables non-invasive tracking of myobundle function and drug response. During culture, myobundles maintain functional acetylcholine receptors and structurally and functionally mature, evidenced by increased myofiber diameter and improved calcium handling and contractile strength. In response to diversely acting drugs, myobundles undergo dose-dependent hypertrophy or toxic myopathy similar to clinical outcomes. Human myobundles provide an enabling platform for predictive drug and toxicology screening and development of novel therapeutics for muscle-related disorders.Item Open Access Cannabinoid exposure and altered DNA methylation in rat and human sperm.(Epigenetics, 2018-01) Murphy, Susan K; Itchon-Ramos, Nilda; Visco, Zachary; Huang, Zhiqing; Grenier, Carole; Schrott, Rose; Acharya, Kelly; Boudreau, Marie-Helene; Price, Thomas M; Raburn, Douglas J; Corcoran, David L; Lucas, Joseph E; Mitchell, John T; McClernon, F Joseph; Cauley, Marty; Hall, Brandon J; Levin, Edward D; Kollins, Scott HLittle is known about the reproductive effects of paternal cannabis exposure. We evaluated associations between cannabis or tetrahydrocannabinol (THC) exposure and altered DNA methylation in sperm from humans and rats, respectively. DNA methylation, measured by reduced representation bisulfite sequencing, differed in the sperm of human users from non-users by at least 10% at 3,979 CpG sites. Pathway analyses indicated Hippo Signaling and Pathways in Cancer as enriched with altered genes (Bonferroni p < 0.02). These same two pathways were also enriched with genes having altered methylation in sperm from THC-exposed versus vehicle-exposed rats (p < 0.01). Data validity is supported by significant correlations between THC exposure levels in humans and methylation for 177 genes, and substantial overlap in THC target genes in rat sperm (this study) and genes previously reported as having altered methylation in the brain of rat offspring born to parents both exposed to THC during adolescence. In humans, cannabis use was also associated with significantly lower sperm concentration. Findings point to possible pre-conception paternal reproductive risks associated with cannabis use.Item Open Access Epstein-Barr virus ensures B cell survival by uniquely modulating apoptosis at early and late times after infection.(Elife, 2017-04-20) Price, Alexander M; Dai, Joanne; Bazot, Quentin; Patel, Luv; Nikitin, Pavel A; Djavadian, Reza; Winter, Peter S; Salinas, Cristina A; Barry, Ashley Perkins; Wood, Kris C; Johannsen, Eric C; Letai, Anthony; Allday, Martin J; Luftig, Micah ALatent Epstein-Barr virus (EBV) infection is causally linked to several human cancers. EBV expresses viral oncogenes that promote cell growth and inhibit the apoptotic response to uncontrolled proliferation. The EBV oncoprotein LMP1 constitutively activates NFκB and is critical for survival of EBV-immortalized B cells. However, during early infection EBV induces rapid B cell proliferation with low levels of LMP1 and little apoptosis. Therefore, we sought to define the mechanism of survival in the absence of LMP1/NFκB early after infection. We used BH3 profiling to query mitochondrial regulation of apoptosis and defined a transition from uninfected B cells (BCL-2) to early-infected (MCL-1/BCL-2) and immortalized cells (BFL-1). This dynamic change in B cell survival mechanisms is unique to virus-infected cells and relies on regulation of MCL-1 mitochondrial localization and BFL-1 transcription by the viral EBNA3A protein. This study defines a new role for EBNA3A in the suppression of apoptosis with implications for EBV lymphomagenesis.Item Open Access I see what you are saying.(Elife, 2016-06-09) Cogan, Gregory BThe motor cortex in the brain tracks lip movements to help with speech perception.Item Open Access Integrin-mediated interactions with extracellular matrix proteins for nucleus pulposus cells of the human intervertebral disc.(J Orthop Res, 2013-10) Bridgen, DT; Gilchrist, CL; Richardson, WJ; Isaacs, RE; Brown, CR; Yang, KL; Chen, J; Setton, LAThe extracellular matrix (ECM) of the human intervertebral disc is rich in molecules that interact with cells through integrin-mediated attachments. Porcine nucleus pulposus (NP) cells have been shown to interact with laminin (LM) isoforms LM-111 and LM-511 through select integrins that regulate biosynthesis and cell attachment. Since human NP cells lose many phenotypic characteristics with age, attachment and interaction with the ECM may be altered. Expression of LM-binding integrins was quantified for human NP cells using flow cytometry. The cell-ECM attachment mechanism was determined by quantifying cell attachment to LM-111, LM-511, or type II collagen after functionally blocking specific integrin subunits. Human NP cells express integrins β1, α3, and α5, with over 70% of cells positive for each subunit. Blocking subunit β1 inhibited NP cell attachment to all substrates. Blocking subunits α1, α2, α3, and α5 simultaneously, but not individually, inhibits NP cell attachment to laminins. While integrin α6β1 mediated porcine NP cell attachment to LM-111, we found integrins α3, α5, and β1 instead contributed to human NP cell attachment. These findings identify integrin subunits that may mediate interactions with the ECM for human NP cells and could be used to promote cell attachment, survival, and biosynthesis in cell-based therapeutics.Item Unknown One Health training, research, and outreach in North America.(Infect Ecol Epidemiol, 2016) Stroud, Cheryl; Kaplan, Bruce; Logan, Jenae E; Gray, Gregory CBACKGROUND: The One Health (OH) concept, formerly referred to as 'One Medicine' in the later part of the 20th century, has gained exceptional popularity in the early 21st century, and numerous academic and non-academic institutions have developed One Health programs. OBJECTIVES: To summarize One Health training, research, and outreach activities originating in North America. METHODS: We used data from extensive electronic records maintained by the One Health Commission (OHC) (www.onehealthcommission.org/) and the One Health Initiative (www.onehealthinitiative.com/) and from web-based searches, combined with the corporate knowledge of the authors and their professional contacts. Finally, a call was released to members of the OHC's Global One Health Community listserv, asking that they populate a Google document with information on One Health training, research, and outreach activities in North American academic and non-academic institutions. RESULTS: A current snapshot of North American One Health training, research, and outreach activities as of August 2016 has evolved. CONCLUSIONS: It is clear that the One Health concept has gained considerable recognition during the first decade of the 21st century, with numerous current training and research activities carried out among North American academic, non-academic, government, corporate, and non-profit entities.Item Open Access Quantification of the pace of biological aging in humans through a blood test, the DunedinPoAm DNA methylation algorithm.(eLife, 2020-05-05) Belsky, Daniel W; Caspi, Avshalom; Arseneault, Louise; Baccarelli, Andrea; Corcoran, David L; Gao, Xu; Hannon, Eiliss; Harrington, Hona Lee; Rasmussen, Line Jh; Houts, Renate; Huffman, Kim; Kraus, William E; Kwon, Dayoon; Mill, Jonathan; Pieper, Carl F; Prinz, Joseph A; Poulton, Richie; Schwartz, Joel; Sugden, Karen; Vokonas, Pantel; Williams, Benjamin S; Moffitt, Terrie EBiological aging is the gradual, progressive decline in system integrity that occurs with advancing chronological age, causing morbidity and disability. Measurements of the pace of aging are needed as surrogate endpoints in trials of therapies designed to prevent disease by slowing biological aging. We report a blood-DNA-methylation measure that is sensitive to variation in pace of biological aging among individuals born the same year. We first modeled change-over-time in 18 biomarkers tracking organ-system integrity across 12 years of follow-up in n = 954 members of the Dunedin Study born in 1972-1973. Rates of change in each biomarker over ages 26-38 years were composited to form a measure of aging-related decline, termed Pace-of-Aging. Elastic-net regression was used to develop a DNA-methylation predictor of Pace-of-Aging, called DunedinPoAm for Dunedin(P)ace(o)f(A)ging(m)ethylation. Validation analysis in cohort studies and the CALERIE trial provide proof-of-principle for DunedinPoAm as a single-time-point measure of a person's pace of biological aging.Item Open Access Regulatory switch at the cytoplasmic interface controls TRPV channel gating.(eLife, 2019-05-09) Zubcevic, Lejla; Borschel, William F; Hsu, Allen L; Borgnia, Mario J; Lee, Seok-YongTemperature-sensitive transient receptor potential vanilloid (thermoTRPV) channels are activated by ligands and heat, and are involved in various physiological processes. ThermoTRPV channels possess a large cytoplasmic ring consisting of N-terminal ankyrin repeat domains (ARD) and C-terminal domains (CTD). The cytoplasmic inter-protomer interface is unique and consists of a CTD coiled around a β-sheet which makes contacts with the neighboring ARD. Despite much existing evidence that the cytoplasmic ring is important for thermoTRPV function, the mechanism by which this unique structure is involved in thermoTRPV gating has not been clear. Here, we present cryo-EM and electrophysiological studies which demonstrate that TRPV3 gating involves large rearrangements at the cytoplasmic inter-protomer interface and that this motion triggers coupling between cytoplasmic and transmembrane domains, priming the channel for opening. Furthermore, our studies unveil the role of this interface in the distinct biophysical and physiological properties of individual thermoTRPV subtypes.Item Open Access RNA-dependent stabilization of SUV39H1 at constitutive heterochromatin.(Elife, 2017-08-01) Johnson, WL; Yewdell, WT; Bell, JC; McNulty, SM; Duda, Z; O'Neill, RJ; Sullivan, BA; Straight, AFHeterochromatin formed by the SUV39 histone methyltransferases represses transcription from repetitive DNA sequences and ensures genomic stability. How SUV39 enzymes localize to their target genomic loci remains unclear. Here, we demonstrate that chromatin-associated RNA contributes to the stable association of SUV39H1 with constitutive heterochromatin in human cells. We find that RNA associated with mitotic chromosomes is concentrated at pericentric heterochromatin, and is encoded, in part, by repetitive α-satellite sequences, which are retained in cis at their transcription sites. Purified SUV39H1 directly binds nucleic acids through its chromodomain; and in cells, SUV39H1 associates with α-satellite RNA transcripts. Furthermore, nucleic acid binding mutants destabilize the association of SUV39H1 with chromatin in mitotic and interphase cells - effects that can be recapitulated by RNase treatment or RNA polymerase inhibition - and cause defects in heterochromatin function. Collectively, our findings uncover a previously unrealized function for chromatin-associated RNA in regulating constitutive heterochromatin in human cells.