Browsing by Subject "immunobiology"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Acute murine cytomegalovirus disrupts established transplantation tolerance and causes recipient allo-sensitization.(American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons, 2020-07-13) Yu, Shuangjin; Dangi, Anil; Burnette, Melanie; Abecassis, Michael M; Thorp, Edward B; Luo, XunrongWe have previously shown that acute cytomegalovirus (CMV) infection disrupts the induction of transplantation tolerance. However, what impact acute CMV infection would have on the maintenance of established tolerance and on subsequent recipient allo-sensitization is a clinically important unanswered question. Here we used an allogeneic murine islet transplantation tolerance model to examine the impact of acute CMV infection on: (a) disruption of established transplantation tolerance during tolerance maintenance; and (b) the possibility of recipient allo-sensitization by CMV-mediated disruption of stable tolerance. We demonstrated that acute CMV infection abrogated transplantation tolerance during the maintenance stage in 50%-60% recipients. We further demonstrated that acute CMV infection-mediated tolerance disruption led to recipient allo-sensitization by reverting the tolerant state of allo-specific T cells and promoting their differentiation to allo-specific memory cells. Consequently, a second same-donor islet allograft was rejected in an accelerated fashion by these recipients. Our study therefore supports close monitoring for allo-sensitization in previously tolerant transplant recipients in whom tolerance maintenance is disrupted by an episode of acute CMV infection.Item Open Access Rapamycin Interferes With Postdepletion Regulatory T Cell Homeostasis and Enhances DSA Formation Corrected by CTLA4-Ig.(Am J Transplant, 2016-09) Oh, B; Yoon, J; Farris, A; Kirk, A; Knechtle, S; Kwun, JPreviously, we demonstrated that alemtuzumab induction with rapamycin as sole maintenance therapy is associated with an increased incidence of humoral rejection in human kidney transplant patients. To investigate the role of rapamycin in posttransplant humoral responses after T cell depletion, fully MHC mismatched hearts were transplanted into hCD52Tg mice, followed by alemtuzumab treatment with or without a short course of rapamycin. While untreated hCD52Tg recipients acutely rejected B6 hearts (n = 12), hCD52Tg recipients treated with alemtuzumab alone or in conjunction with rapamycin showed a lack of acute rejection (MST > 100). However, additional rapamycin showed a reduced beating quality over time and increased incidence of vasculopathy. Furthermore, rapamycin supplementation showed an increased serum donor-specific antibodies (DSA) level compared to alemtuzumab alone at postoperation days 50 and 100. Surprisingly, additional rapamycin treatment significantly reduced CD4(+) CD25(+) FoxP3(+) T reg cell numbers during treatment. On the contrary, ICOS(+) PD-1(+) CD4 follicular helper T cells in the lymph nodes were significantly increased. Interestingly, CTLA4-Ig supplementation in conjunction with rapamycin corrected rapamycin-induced accelerated posttransplant humoral response by directly modulating Tfh cells but not Treg cells. This suggests that rapamycin after T cell depletion could affect Treg cells leading to an increase of Tfh cells and DSA production that can be reversed by CTLA4-Ig.