Browsing by Subject "invertebrates"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Amplicon sequencing of 42 nuclear loci supports directional gene flow between South Pacific populations of a hydrothermal vent limpet.(Ecology and evolution, 2019-06) Plouviez, Sophie; LaBella, Abigail Leavitt; Weisrock, David W; von Meijenfeldt, FA Bastiaan; Ball, Bernard; Neigel, Joseph E; Van Dover, Cindy LIn the past few decades, population genetics and phylogeographic studies have improved our knowledge of connectivity and population demography in marine environments. Studies of deep-sea hydrothermal vent populations have identified barriers to gene flow, hybrid zones, and demographic events, such as historical population expansions and contractions. These deep-sea studies, however, used few loci, which limit the amount of information they provided for coalescent analysis and thus our ability to confidently test complex population dynamics scenarios. In this study, we investigated population structure, demographic history, and gene flow directionality among four Western Pacific hydrothermal vent populations of the vent limpet Lepetodrilus aff. schrolli. These vent sites are located in the Manus and Lau back-arc basins, currently of great interest for deep-sea mineral extraction. A total of 42 loci were sequenced from each individual using high-throughput amplicon sequencing. Amplicon sequences were analyzed using both genetic variant clustering methods and evolutionary coalescent approaches. Like most previously investigated vent species in the South Pacific, L. aff. schrolli showed no genetic structure within basins but significant differentiation between basins. We inferred significant directional gene flow from Manus Basin to Lau Basin, with low to no gene flow in the opposite direction. This study is one of the very few marine population studies using >10 loci for coalescent analysis and serves as a guide for future marine population studies.Item Open Access Constant mortality and fertility over age in Hydra.(Proc Natl Acad Sci U S A, 2015-12-22) Schaible, Ralf; Scheuerlein, Alexander; Dańko, Maciej J; Gampe, Jutta; Martínez, Daniel E; Vaupel, James WSenescence, the increase in mortality and decline in fertility with age after maturity, was thought to be inevitable for all multicellular species capable of repeated breeding. Recent theoretical advances and compilations of data suggest that mortality and fertility trajectories can go up or down, or remain constant with age, but the data are scanty and problematic. Here, we present compelling evidence for constant age-specific death and reproduction rates in Hydra, a basal metazoan, in a set of experiments comprising more than 3.9 million days of observations of individual Hydra. Our data show that 2,256 Hydra from two closely related species in two laboratories in 12 cohorts, with cohort age ranging from 0 to more than 41 y, have extremely low, constant rates of mortality. Fertility rates for Hydra did not systematically decline with advancing age. This falsifies the universality of the theories of the evolution of aging that posit that all species deteriorate with age after maturity. The nonsenescent life history of Hydra implies levels of maintenance and repair that are sufficient to prevent the accumulation of damage for at least decades after maturity, far longer than the short life expectancy of Hydra in the wild. A high proportion of stem cells, constant and rapid cell turnover, few cell types, a simple body plan, and the fact that the germ line is not segregated from the soma are characteristics of Hydra that may make nonsenescence feasible. Nonsenescence may be optimal because lifetime reproduction may be enhanced more by extending adult life spans than by increasing daily fertility.