Browsing by Subject "lipids"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Benefit of Ezetimibe Added to Simvastatin in Reduced Kidney Function.(J Am Soc Nephrol, 2017-10) Stanifer, John W; Charytan, David M; White, Jennifer; Lokhnygina, Yuliya; Cannon, Christopher P; Roe, Matthew T; Blazing, Michael AEfficacy of statin-based therapies in reducing cardiovascular mortality in individuals with CKD seems to diminish as eGFR declines. The strongest evidence supporting the cardiovascular benefit of statins in individuals with CKD was shown with ezetimibe plus simvastatin versus placebo. However, whether combination therapy or statin alone resulted in cardiovascular benefit is uncertain. Therefore, we estimated GFR in 18,015 individuals from the IMPROVE-IT (ezetimibe plus simvastatin versus simvastatin alone in individuals with cardiovascular disease and creatinine clearance >30 ml/min) and examined post hoc the relationship of eGFR with end points across treatment arms. For the primary end point of cardiovascular death, major coronary event, or nonfatal stroke, the relative risk reduction of combination therapy compared with monotherapy differed by eGFR (P=0.04). The difference in treatment effect was observed at eGFR≤75 ml/min per 1.73 m2 and most apparent at levels ≤60 ml/min per 1.73 m2 Compared with individuals receiving monotherapy, individuals receiving combination therapy with a baseline eGFR of 60 ml/min per 1.73 m2 experienced a 12% risk reduction (hazard ratio [HR], 0.88; 95% confidence interval [95% CI], 0.82 to 0.95); those with a baseline eGFR of 45 ml/min per 1.73 m2 had a 13% risk reduction (HR, 0.87; 95% CI, 0.78 to 0.98). In stabilized individuals within 10 days of acute coronary syndrome, combination therapy seemed to be more effective than monotherapy in individuals with moderately reduced eGFR (30-60 ml/min per 1.73 m2). Further studies examining potential benefits of combination lipid-lowering therapy in individuals with CKD are needed.Item Open Access Pilot Study of Metabolomic Clusters as State Markers of Major Depression and Outcomes to CBT Treatment.(Frontiers in neuroscience, 2019-01) Bhattacharyya, Sudeepa; Dunlop, Boadie W; Mahmoudiandehkordi, Siamak; Ahmed, Ahmed T; Louie, Gregory; Frye, Mark A; Weinshilboum, Richard M; Krishnan, Ranga R; Rush, A John; Mayberg, Helen S; Craighead, W Edward; Kaddurah-Daouk, RimaMajor depressive disorder (MDD) is a common and disabling syndrome with multiple etiologies that is defined by clinically elicited signs and symptoms. In hopes of developing a list of candidate biological measures that reflect and relate closely to the severity of depressive symptoms, so-called "state-dependent" biomarkers of depression, this pilot study explored the biochemical underpinnings of treatment response to cognitive behavior therapy (CBT) in medication-free MDD outpatients. Plasma samples were collected at baseline and week 12 from a subset of MDD patients (N = 26) who completed a course of CBT treatment as part of the Predictors of Remission in Depression to Individual and Combined Treatments (PReDICT) study. Targeted metabolomic profiling using the AbsoluteIDQ® p180 Kit and LC-MS identified eight "co-expressed" metabolomic modules. Of these eight, three were significantly associated with change in depressive symptoms over the course of the 12-weeks. Metabolites found to be most strongly correlated with change in depressive symptoms were branched chain amino acids, acylcarnitines, methionine sulfoxide, and α-aminoadipic acid (negative correlations with symptom change) as well as several lipids, particularly the phosphatidlylcholines (positive correlation). These results implicate disturbed bioenergetics as an important state marker in the pathobiology of MDD. Exploratory analyses contrasting remitters to CBT versus those who failed the treatment further suggest these metabolites may serve as mediators of recovery during CBT treatment. Larger studies examining metabolomic change patterns in patients treated with pharmacotherapy or psychotherapy will be necessary to elucidate the biological underpinnings of MDD and the -specific biologies of treatment response.