Browsing by Subject "magnetic resonance"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Association of Jump-Landing Biomechanics With Tibiofemoral Articular Cartilage Composition 12 Months After ACL Reconstruction.(Orthopaedic journal of sports medicine, 2021-07) Pfeiffer, Steven J; Spang, Jeffrey T; Nissman, Daniel; Lalush, David; Wallace, Kyle; Harkey, Matthew S; Pietrosimone, Laura S; Padua, Darin; Blackburn, Troy; Pietrosimone, BrianBackground
Excessively high joint loading during dynamic movements may negatively influence articular cartilage health and contribute to the development of posttraumatic osteoarthritis after anterior cruciate ligament reconstruction (ACLR). Little is known regarding the link between aberrant jump-landing biomechanics and articular cartilage health after ACLR.Purpose/hypothesis
The purpose of this study was to determine the associations between jump-landing biomechanics and tibiofemoral articular cartilage composition measured using T1ρ magnetic resonance imaging (MRI) relaxation times 12 months postoperatively. We hypothesized that individuals who demonstrate alterations in jump-landing biomechanics, commonly observed after ACLR, would have longer T1ρ MRI relaxation times (longer T1ρ relaxation times associated with less proteoglycan density).Study design
Cross-sectional study; Level of evidence, 3.Methods
A total of 27 individuals with unilateral ACLR participated in this cross-sectional study. Jump-landing biomechanics (peak vertical ground-reaction force [vGRF], peak internal knee extension moment [KEM], peak internal knee adduction moment [KAM]) and T1ρ MRI were collected 12 months postoperatively. Mean T1ρ relaxation times for the entire weightbearing medial femoral condyle, lateral femoral condyle (global LFC), medial tibial condyle, and lateral tibial condyle (global LTC) were calculated bilaterally. Global regions of interest were further subsectioned into posterior, central, and anterior regions of interest. All T1ρ relaxation times in the ACLR limb were normalized to the uninjured contralateral limb. Linear regressions were used to determine associations between T1ρ relaxation times and biomechanics after accounting for meniscal/chondral injury.Results
Lower ACLR limb KEM was associated with longer T1ρ relaxation times for the global LTC (ΔR 2 = 0.24; P = .02), posterior LTC (ΔR 2 = 0.21; P = .03), and anterior LTC (ΔR 2 = 0.18; P = .04). Greater ACLR limb peak vGRF was associated with longer T1ρ relaxation times for the global LFC (ΔR 2 = 0.20; P = .02) and central LFC (ΔR 2 = 0.15; P = .05). Peak KAM was not associated with T1ρ outcomes.Conclusion
At 12 months postoperatively, lower peak KEM and greater peak vGRF during jump landing were related to longer T1ρ relaxation times, suggesting worse articular cartilage composition.Item Open Access Relationship of T2-Weighted MRI Myocardial Hyperintensity and the Ischemic Area-At-Risk.(Circ Res, 2015-07-17) Kim, Han W; Van Assche, Lowie; Jennings, Robert B; Wince, W Benjamin; Jensen, Christoph J; Rehwald, Wolfgang G; Wendell, David C; Bhatti, Lubna; Spatz, Deneen M; Parker, Michele A; Jenista, Elizabeth R; Klem, Igor; Crowley, Anna Lisa C; Chen, Enn-Ling; Judd, Robert M; Kim, Raymond JRATIONALE: After acute myocardial infarction (MI), delineating the area-at-risk (AAR) is crucial for measuring how much, if any, ischemic myocardium has been salvaged. T2-weighted MRI is promoted as an excellent method to delineate the AAR. However, the evidence supporting the validity of this method to measure the AAR is indirect, and it has never been validated with direct anatomic measurements. OBJECTIVE: To determine whether T2-weighted MRI delineates the AAR. METHODS AND RESULTS: Twenty-one canines and 24 patients with acute MI were studied. We compared bright-blood and black-blood T2-weighted MRI with images of the AAR and MI by histopathology in canines and with MI by in vivo delayed-enhancement MRI in canines and patients. Abnormal regions on MRI and pathology were compared by (a) quantitative measurement of the transmural-extent of the abnormality and (b) picture matching of contours. We found no relationship between the transmural-extent of T2-hyperintense regions and that of the AAR (bright-blood-T2: r=0.06, P=0.69; black-blood-T2: r=0.01, P=0.97). Instead, there was a strong correlation with that of infarction (bright-blood-T2: r=0.94, P<0.0001; black-blood-T2: r=0.95, P<0.0001). Additionally, contour analysis demonstrated a fingerprint match of T2-hyperintense regions with the intricate contour of infarcted regions by delayed-enhancement MRI. Similarly, in patients there was a close correspondence between contours of T2-hyperintense and infarcted regions, and the transmural-extent of these regions were highly correlated (bright-blood-T2: r=0.82, P<0.0001; black-blood-T2: r=0.83, P<0.0001). CONCLUSION: T2-weighted MRI does not depict the AAR. Accordingly, T2-weighted MRI should not be used to measure myocardial salvage, either to inform patient management decisions or to evaluate novel therapies for acute MI.