Browsing by Subject "microbiome"
- Results Per Page
- Sort Options
Item Open Access A phylogenetic transform enhances analysis of compositional microbiota data.(Elife, 2017-02-15) Silverman, Justin D; Washburne, Alex D; Mukherjee, Sayan; David, Lawrence ASurveys of microbial communities (microbiota), typically measured as relative abundance of species, have illustrated the importance of these communities in human health and disease. Yet, statistical artifacts commonly plague the analysis of relative abundance data. Here, we introduce the PhILR transform, which incorporates microbial evolutionary models with the isometric log-ratio transform to allow off-the-shelf statistical tools to be safely applied to microbiota surveys. We demonstrate that analyses of community-level structure can be applied to PhILR transformed data with performance on benchmarks rivaling or surpassing standard tools. Additionally, by decomposing distance in the PhILR transformed space, we identified neighboring clades that may have adapted to distinct human body sites. Decomposing variance revealed that covariation of bacterial clades within human body sites increases with phylogenetic relatedness. Together, these findings illustrate how the PhILR transform combines statistical and phylogenetic models to overcome compositional data challenges and enable evolutionary insights relevant to microbial communities.Item Open Access Current State of and Future Opportunities for Prediction in Microbiome Research: Report from the Mid-Atlantic Microbiome Meet-up in Baltimore on 9 January 2019.(mSystems, 2019-10) Sakowski, Eric; Uritskiy, Gherman; Cooper, Rachel; Gomes, Maya; McLaren, Michael R; Meisel, Jacquelyn S; Mickol, Rebecca L; Mintz, C David; Mongodin, Emmanuel F; Pop, Mihai; Rahman, Mohammad Arifur; Sanchez, Alvaro; Timp, Winston; Vela, Jeseth Delgado; Wolz, Carly Muletz; Zackular, Joseph P; Chopyk, Jessica; Commichaux, Seth; Davis, Meghan; Dluzen, Douglas; Ganesan, Sukirth M; Haruna, Muyideen; Nasko, Dan; Regan, Mary J; Sarria, Saul; Shah, Nidhi; Stacy, Brook; Taylor, Dylan; DiRuggiero, Jocelyne; Preheim, Sarah PAccurate predictions across multiple fields of microbiome research have far-reaching benefits to society, but there are few widely accepted quantitative tools to make accurate predictions about microbial communities and their functions. More discussion is needed about the current state of microbiome analysis and the tools required to overcome the hurdles preventing development and implementation of predictive analyses. We summarize the ideas generated by participants of the Mid-Atlantic Microbiome Meet-up in January 2019. While it was clear from the presentations that most fields have advanced beyond simple associative and descriptive analyses, most fields lack essential elements needed for the development and application of accurate microbiome predictions. Participants stressed the need for standardization, reproducibility, and accessibility of quantitative tools as key to advancing predictions in microbiome analysis. We highlight hurdles that participants identified and propose directions for future efforts that will advance the use of prediction in microbiome research.Item Open Access The gut microbiome of nonhuman primates: Lessons in ecology and evolution.(American journal of primatology, 2018-06-04) Clayton, Jonathan B; Gomez, Andres; Amato, Katherine; Knights, Dan; Travis, Dominic A; Blekhman, Ran; Knight, Rob; Leigh, Steven; Stumpf, Rebecca; Wolf, Tiffany; Glander, Kenneth E; Cabana, Francis; Johnson, Timothy JThe mammalian gastrointestinal (GI) tract is home to trillions of bacteria that play a substantial role in host metabolism and immunity. While progress has been made in understanding the role that microbial communities play in human health and disease, much less attention has been given to host-associated microbiomes in nonhuman primates (NHPs). Here we review past and current research exploring the gut microbiome of NHPs. First, we summarize methods for characterization of the NHP gut microbiome. Then we discuss variation in gut microbiome composition and function across different NHP taxa. Finally, we highlight how studying the gut microbiome offers new insights into primate nutrition, physiology, and immune system function, as well as enhances our understanding of primate ecology and evolution. Microbiome approaches are useful tools for studying relevant issues in primate ecology. Further study of the gut microbiome of NHPs will offer new insight into primate ecology and evolution as well as human health.Item Embargo The Role of Akkermansia Species and Subspecies in Human Health(2024) Mueller, Katherine DianneAkkermansia are mucin-degrading bacteria commonly found in the human gastrointestinal (GI) tract. The prevalence and abundance of these bacteria, notably Akkermansia muciniphila, are correlated with immunological and metabolic health in humans and have gained notoriety as a potential next-generation probiotic. Until recently, A. muciniphila was the only species of the phylum Verrucomicrobia identified in the human GI tract. However, it is increasingly clear that Akkermansia in the GI tract are diverse and that there are several human-associated Akkermansia species with significantly larger genomes than A. muciniphila. I hypothesize that this added genetic content may impact how various subgroups of Akkermansia modulate host immunological and metabolic health.To define the breadth of diversity within the genus Akkermansia, I conducted a pangenomic analysis of 234 Akkermansia genomes. My findings based on average nucleotide identity, full-length 16S rRNA gene identity, and conservation among core Akkermansia genes identified a novel group of Akkermansia and indicated that the genus Akkermansia should be split into several species. Further analysis of fatty acid composition and biochemical characterization of representative isolates supported this notion. Additionally, I found that A. muciniphila sensu stricto, the most prevalent Akkermansia species in humans, should be subdivided into two subspecies clades. Having defined species boundaries between strains that were previously all classified as one, I next sought to determine if these distinctions are relevant to the previously established correlations between Akkermansia and human health. To this end, I employed high-resolution species and clade assignments to reanalyze publicly available metagenomic datasets to determine if there are species or clade-specific relationships between Akkermansia and various disease outcomes. I observed species-specific correlations between Akkermansia abundance and obesity in a pediatric cohort. For a set of inflammatory bowel disease cohorts, I identified species-specific and clade-specific decreased abundance of Akkermansia in patients with Crohn’s disease or ulcerative colitis. In patients who had undergone hematopoietic cell transplantation, I found no correlation between Akkermansia species or phylogroups and graph-versus-host-disease development. In patients undergoing immune checkpoint inhibitor therapies for non-small cell lung cancer, I observed a significant association between one A. muciniphila clade and survival outcomes. Additionally, I showed that these species-predictive methods could be applied to additional species of Akkermansia and another mucophilic gastrointestinal bacterium, Ruminococcus gnavus. Finally, I described variability in biofilm production across isolates of the Akkermansia genus. I describe the generation of a library of transposon mutants in one biofilm-producing strain, Akk147, providing a possible link between mucin degradation and biofilm production in modulating the association between Akkermansia and the host. Finally, I tested whether biofilm production enhances the colonization ability of three A. muciniphila isolates of varying biofilm-production and determined that in vitro biofilm production does not enhance colonization of the murine GI tract. Overall, my findings suggest that the prevalence of specific Akkermansia species and clades may be crucial in evaluating their association with host health, and thus their usefulness in promoting health. As these associations differ between disease contexts, making these distinctions should be an important consideration when using Akkermansia as a probiotic or therapeutic supplement.