Browsing by Subject "molecular systematics"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Fern phylogeny inferred from 400 leptosporangiate species and three plastid genes(Taxon, 2007-01-01) Schuettpelz, E; Pryer, KMIn an effort to obtain a solid and balanced approximation of global fern phylogeny to serve as a tool for addressing large-scale evolutionary questions, we assembled and analyzed the most inclusive molecular dataset for leptosporangiate ferns to date. Three plastid genes (rbcL, atpB, atpA), totaling more than 4,000 bp, were sequenced for each of 400 leptosporangiate fern species (selected using a proportional sampling approach) and five outgroups. Maximum likelihood analysis of these data yielded an especially robust phylogeny: 80% of the nodes were supported by a maximum likelihood bootstrap percentage ≥ 70. The scope of our analysis provides unprecedented insight into overall fern relationships, not only delivering additional support for the deepest leptosporangiate divergences, but also uncovering the composition of more recently emerging clades and their relationships to one another.Item Open Access Phylogenetic relationships of the enigmatic fern families Hymenophyllopsidaceae and Lophosoriaceae: Evidence from rbcL nucleotide sequences(Plant Systematics and Evolution, 1999-01-01) Wolf, PG; Sipes, SD; White, MR; Martines, ML; Pryer, KM; Smith, AR; Ueda, KNucleotide sequences from rbcL were used to infer relationships of Lophosoriaceae and Hymenophyllopsidaceae. The phylogenetic positions of these two monotypic fern families have been debated, and neither group had been included in recent molecular systematic studies of ferns. Maximum parsimony analysis of our data supported a sister relationship between Lophosoria and Dicksonia, and also between Hymenophyllopsis and Cyathea. Thus, both newly-examined families appear to be part of a previously characterized and well-supported clade of tree ferns. The inferred relationships of Lophosoria are consistent with most (but not all) recent treatments. However, Hymenophyllopsis includes only small delicate plants superficially similar to filmy ferns (Hymenophyllaceae), very different from the large arborescent taxa. Nevertheless, some synapomorphic characteristics are shared with the tree fern clade. Further studies on gametophytes of Hymenophyllopsis are needed to test these hypotheses of relationship.Item Open Access Phylogeny and evolution of ferns (monilophytes) with a focus on the early leptosporangiate divergences.(American journal of botany, 2004-10) Pryer, Kathleen M; Schuettpelz, Eric; Wolf, Paul G; Schneider, Harald; Smith, Alan R; Cranfill, RaymondThe phylogenetic structure of ferns (= monilophytes) is explored here, with a special focus on the early divergences among leptosporangiate lineages. Despite considerable progress in our understanding of fern relationships, a rigorous and comprehensive analysis of the early leptosporangiate divergences was lacking. Therefore, a data set was designed here to include critical taxa that were not included in earlier studies. More than 5000 bp from the plastid (rbcL, atpB, rps4) and the nuclear (18S rDNA) genomes were sequenced for 62 taxa. Phylogenetic analyses of these data (1) confirm that Osmundaceae are sister to the rest of the leptosporangiates, (2) resolve a diverse set of ferns formerly thought to be a subsequent grade as possibly monophyletic (((Dipteridaceae, Matoniaceae), Gleicheniaceae), Hymenophyllaceae), and (3) place schizaeoid ferns as sister to a large clade of "core leptosporangiates" that includes heterosporous ferns, tree ferns, and polypods. Divergence time estimates for ferns are reported from penalized likelihood analyses of our molecular data, with constraints from a reassessment of the fossil record.Item Open Access The utility of nuclear gapCp in resolving polyploid fern origins(Systematic Botany, 2008-10-01) Schuettpelz, E; Grusz, AL; Windham, MD; Pryer, KMAlthough polyploidy is rampant in ferns and plays a major role in shaping their diversity, the evolutionary history of many polyploid species remains poorly understood. Nuclear DNA sequences can provide valuable information for identifying polyploid origins; however, remarkably few nuclear markers have been developed specifically for ferns, and previously published primer sets do not work well in many fern lineages. In this study, we present new primer sequences for the amplification of a portion of the nuclear gapCp gene (encoding a glyceraldehyde-3-phosphate dehydrogenase). Through a broad survey across ferns, we demonstrate that these primers are nearly universal for this clade. With a case study in cheilanthoids, we show that this rapidly evolving marker is a powerful tool for discriminating between autopolyploids and allopolyploids. Our results indicate that gapCp holds considerable potential for addressing species-level questions across the fern tree of life. © Copyright 2008 by the American Society of Plant Taxonomists.