Browsing by Subject "mountaintop mining"
Results Per Page
Sort Options
Item Open Access Changing Waters: Trends in Central Appalachian Streamflow in the Presence of Mountaintop Mining(2016-04-29) Knowlton, MeaganMountaintop mining (MTM) became popular in the 1970s in Central Appalachia and today remains the dominant form of coal mining in the region (Ross et al., 2016). Approximately 6-7% of the Appalachian Coalfield Region in West Virginia, Kentucky, Virginia, and Tennessee is covered by mountaintop mining operations (Lindberg et. al, 2011). MTM involves stripping mountain surfaces by up to 300 vertical meters of rock material (“overburden”) to gain access to thin coal seams (Lindberg et al., 2011; Palmer et al., 2010). The overburden is then deposited in adjacent valleys as so-called “valley fills,” often burying headwater streams that originate in the mountains. These valley fills increase a watershed’s storage potential to an unknown degree. Hydrologic processes play significant roles in species habitats, aquatic chemistry and ecology, and overall aquatic ecosystem health (e.g., Miller & Zégre, 2014). The impacts of human activities and climate variability may cause hydrologic regimes to change, threatening the processes by which streams support ecosystem and human health. MTM research, especially in Central Appalachia, has largely focused on the effects of MTM on water chemistry and aquatic ecosystem health (Bernhardt et al., 2012; Palmer et al., 2010; Bernhardt & Palmer, 2011; Lindberg et al., 2011). This study contributes a regional-scale examination of hydrologic alterations in the presence of changing climate and land cover conditions to the field of hydrology. One of the possible effects of topographic change from MTMVF could be a change in flow duration curves. I expected to see increases in low flows due to increased storage in the new MTM systems; during a storm, the valley fills likely increase the storage potential of the area. Furthermore, I hypothesized that any possible effect of MTM on hydrology will increase with an increase in the watershed area affected by MTM. For this study I performed both time series analysis on precipitation and streamflow data as well as spatial analysis of MTM extent. First, I compiled streamflow and precipitation data from twelve watersheds in West Virginia and tested for trends in hydrologic and precipitation indices for the full periods of record. Second, I compared the trends in the post-mining time period (post-1976) with the pre-mining record, to test for trends in streamflow related to MTM. Third, I used four snapshots over time of MTM coverage data to characterize each study watershed by the percent land area covered by MTM, and compared these coverages with the magnitude of hydrologic trends, where trends existed. Comparing streamflow and precipitation totals between pre- and post-mining time blocks produced a few significant results, indicating that only two of the watersheds violated the assumption of stationarity from pre- to post-mining. I found some significant trends when considering metrics other than annual totals of daily-resolution data; minima and runoff ratios demonstrated some presence of trend in some watersheds, though not across all watersheds. Minima were more sensitive to time series analysis than annual totals. Sites 10 and 6 had the highest and third-highest amount of MTM, respectively (Table 2), and both had increasing minima over all years of data. The trends in minima in these watersheds could be associated with the high amounts of MTM. Increasing minima support the hypothesis that MTM increases the amount of storage in the landscape and provides more steady inputs of baseflow from storage sources. Site 10 demonstrates some of the characteristics expected of a watered affected by MTMVF. The late summer streamflow, or the low flows, appear to be increasing at Site 10. Runoff ratios overall had more significant results than the other streamflow metrics. Runoff ratio provides information as to whether the relationship between streamflow and precipitation is changing. Based on runoff ratios in summer and winter months, I assessed whether trends were detectable in high flow and low flow periods. The only watershed with a detectable upward trend in annual summer runoff ratios over time was Site 10. These above results indicate that baseflow in the streams of the Sites 6 and 10 watersheds may be increasing over time. Based on the results of this study, I conclude that some aspects of regional streamflow regimes do not meet the assumption of stationarity in the face of MTM; the characteristics where trends are most detectable include streamflow minima and seasonal runoff ratios. Future research could increase the scale of hydrologic regime analysis to more watersheds throughout the coalfield region. Studies of this nature can support informed decision making and understanding of the trade-offs between the benefits of altering land cover for economic growth and the possible negative impacts of environmental degradation (Defries & Eshleman, 2004). Policy decisions regarding MTM will need to evaluate scientific data on the impacts of MTM in order to make the best choices to protect human, wildlife, and economic health.Item Open Access Linking topographic, hydrologic, and bioegeochemical change in human dominated landscapes(2017) Ross, Matthew Richard VossTo satisfy a growing population, much of Earth’s surface has been designed to suit humanity’s needs. Although these ecosystem designs have improved human welfare, they have also produced significant negative environmental impacts, which applied ecology as a field has attempted to address and solve. Many of the failures in applied ecology to achieve this goal of reducing neg- ative environmental impacts are design failures, not failures in the science. Here, we review (a) how humans have designed much of Earth’s surface, (b) the history of design ideas in ecology and the philosophical and practical critiques of these ideas, (c) design as a conceptual process, (d) how changing approaches and goals in subfields of applied ecology reflect changes and failures in design, and (e) why it is important not only for ecologists to en- courage design fields to incorporate ecology into their practice but also for design to be more thoroughly incorporated into ours.
One of the most heavily altered and designed ecosystems in the world is the mountaintop mines of Central Appalachia. Mountaintop mining is the most common form of coal mining in the Central Appalachian ecoregion. Previous estimates suggest that active, reclaimed, or abandoned mountaintop mines cover ∼7% of Central Appalachia. While this is double the areal extent of development in the ecoregion (estimated to occupy <3% of the land area), the impacts are far more extensive than areal estimates alone can convey as the impacts of mines extend 10s to 100s of meters below the current land surface. Here, we provide the first estimates for the total volumetric and topographic disturbance associated with mining in an 11 500 km2 region of southern West Virginia. We find that the cutting of ridges and filling of valleys has lowered the median slope of mined landscapes in the region by nearly 10 degrees while increasing their average elevation by 3 m as a result of expansive valley filling. We estimate that in southern West Virginia, more than 6.4km3 of bedrock has been broken apart and deposited into 1544 headwater valley fills. We used NPDES monitoring datatsets available for 91 of these valley fills to explore whether fill characteristics could explain variation in the pH or selenium concentrations reported for streams draining these fills. We found that the volume of overburden in individual valley fills correlates with stream pH and selenium concentration, and suggest that a three-dimensional assessment of mountaintop mining impacts is necessary to predict both the severity and the longevity of the resulting environmental impacts.
Chemical weathering of bedrock is the ultimate source of solutes for all ecosystems, a geologic sink of C, and controls the rate at which mountains dissolve into the sea. Human activities bring large volumes of bedrock to the surface and enhance global weathering rates. Here, we show watersheds impacted by mountaintop mining for coal have among the highest rates of chemical weathering ever reported. Mined watersheds deliver nearly 9,000 kg ha-1 y-1 of dissolved ions downstream. This translates into a chemical weathering rate ~ 330 mm ky-1, which is 55-times higher than background total (chemical and physical) weathering. These exceptionally high dissolution rates result from the production of sulfuric acid by pyrite oxidation. As this strong acid rapidly weathers surrounding carbonate materials, it not only releases large amounts of dissolved solutes, it also liberates 10-50 g of rock-derived C m-2 yr-1. This shifts mined watersheds from net geologic carbon sinks to net geologic carbon sources, further adding to the carbon costs from burning coal and deforesting these landscapes.
The impact from mining will likely last decades for some aspects of recovery and centuries to millennia for others. To examine the paired forest, hydrologic, and biogeochemical changes from mining we used a combination of remote sensing and watershed monitoring. We show that forest recovery on mines is at least twice as slow as typical forest recovery from clearcutting, and that mined areas have persistent low canopy height gaps. These vegetative changes are coupled with decreases in runoff ratios as mines age and water moves through flatter, vegetated landscapes. However, the vegetation change is uncoupled from biogeochemical processes, with strong alkaline mine drainage signals persisting for decades, even as vegetation recovers.
Item Open Access Linking upstream mining to downstream water quality: Mountaintop mining in West Virginia(2010-04-30T16:33:20Z) Carter, CatherineMountaintop mining valley fill (MTM/VF) coal mining is currently the dominant form of land use change in the central Appalachians. MTM/VF activities level mountains, remove forests and forest soils, bury headwater streams and generate substantial amounts of acid and alkaline mine drainage. Numerous case studies have documented elevated concentrations of sulfate and trace metal and metalloids with known toxicity in surface waters downstream from MTM/VF activity, yet no comprehensive effort has been made to link landscape scale mining activity and water quality. Here, I used newly obtained remote sensing data of surface mining activity delineated from 1976 to 2005 to estimate the extent of MTM/VF impact on downstream surface water quality in the Coal and Guyandotte river basins of WV. Hydrologic connectivity between mining and water quality was estimated using an inverse distance weighting technique in GIS (ESRI, Inc.). The findings show significant biogeochemical alterations, including streamwater conductivity and sulfate concentrations, even when small amounts of surface mining (<5%) are observed. Results provide the first comprehensive analysis of the cumulative impact of mining activity in these watersheds on water quality and demonstrate the need for further investigation involving strategic water quality sampling with the ultimate goal of developing an empirical basis on which to form regulations governing MTM/VF throughout the central Appalachians.