Browsing by Subject "nucl-ex"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Open Access Development of a $^{83\mathrm{m}}$Kr source for the calibration of the CENNS-10 Liquid Argon Detector(Journal of Instrumentation, 2020-10-21) Collaboration, COHERENT; Akimov, D; An, P; Awe, C; Barbeau, PS; Becker, B; Belov, V; Bernardi, I; Blackston, MA; Blokland, L; Bolozdynya, A; Cabrera-Palmer, B; Chen, N; Chernyak, D; Conley, E; Daughhetee, J; Coello, M del Valle; Detwiler, JA; Durand, MR; Efremenko, Y; Elliott, SR; Fabris, L; Febbraro, M; Fox, W; Galindo-Uribarri, A; Rosso, A Gallo; Green, MP; Hansen, KS; Heath, MR; Hedges, S; Hughes, M; Johnson, T; Khromov, A; Konovalov, A; Kozlova, E; Kumpan, A; Li, L; Librande, JT; Link, JM; Liu, J; Mann, K; Markoff, DM; McGoldrick, O; Mueller, PE; Newby, J; Parno, DS; Pentilla, S; Pershey, D; Radford, D; Rapp, R; Ray, H; Raybern, J; Razuvaeva, O; Reyna, D; Rich, GC; Rudik, D; Runge, J; Salvat, DJ; Scholberg, K; Shakirov, A; Simakov, G; Snow, WM; Sosnovtsev, V; Suh, B; Tayloe, R; Tellez-Giron-Flores, K; Thornton, RT; Tolstukhin, I; Vanderwerp, J; Varner, RL; Venkataraman, R; Virtue, CJ; Visser, G; Wiseman, C; Wongjirad, T; Yang, J; Yen, Y-R; Yoo, J; Yu, C-H; Zettlemoyer, JWe report on the preparation of and calibration measurements with a $^{83\mathrm{m}}$Kr source for the CENNS-10 liquid argon detector. $^{83\mathrm{m}}$Kr atoms generated in the decay of a $^{83}$Rb source were introduced into the detector via injection into the Ar circulation loop. Scintillation light arising from the 9.4 keV and 32.1 keV conversion electrons in the decay of $^{83\mathrm{m}}$Kr in the detector volume were then observed. This calibration source allows the characterization of the low-energy response of the CENNS-10 detector and is applicable to other low-energy-threshold detectors. The energy resolution of the detector was measured to be 9$\%$ at the total $^{83\mathrm{m}}$Kr decay energy of 41.5 keV. We performed an analysis to separately calibrate the detector using the two conversion electrons at 9.4 keV and 32.1 keVItem Open Access Issues with the search for critical point in QCD with relativistic heavy ion collisions(Physical Review C, 2020-03-01) Asakawa, M; Kitazawa, M; Müller, B© 2020 American Physical Society. A systematic search for a critical point in the phase diagram of QCD matter is under way at the Relativistic Heavy Ion Collider (RHIC) and is planned at several future facilities. Its existence, if confirmed, and its location will greatly enhance our understanding of QCD. In this article, we emphasize several important issues that are often not fully recognized in theoretical interpretations of experimental results relevant to the critical point search. We discuss ways in which our understanding on these issues can be improved.Item Open Access LEGEND-1000 Preconceptual Design ReportCollaboration, LEGEND; Abgrall, N; Abt, I; Agostini, M; Alexander, A; Andreoiu, C; Araujo, GR; III, FT Avignone; Bae, W; Bakalyarov, A; Balata, M; Bantel, M; Barabanov, I; Barabash, AS; Barbeau, PS; Barton, CJ; Barton, PJ; Baudis, L; Bauer, C; Bernieri, E; Bezrukov, L; Bhimani, KH; Biancacci, V; Blalock, E; Bolozdynya, A; Borden, S; Bos, B; Bossio, E; Boston, A; Bothe, V; Bouabid, R; Boyd, S; Brugnera, R; Burlac, N; Busch, M; Caldwell, A; Caldwell, TS; Carney, R; Cattadori, C; Chan, Y-D; Chernogorov, A; Christofferson, CD; Chu, P-H; Clark, M; Cohen, T; Combs, D; Comellato, T; Cooper, RJ; Costa, IA; D'Andrea, V; Detwiler, JA; Giacinto, A Di; Marco, N Di; Dobson, J; Drobizhev, A; Durand, MR; Edzards, F; Efremenko, Yu; Elliott, SR; Engelhardt, A; Fajt, L; Faud, N; Febbraro, MT; Ferella, F; Fields, DE; Fischer, F; Fomina, M; Fox, H; Franchi, J; Gala, R; Galindo-Uribarri, A; Gangapshev, A; Garfagnini, A; Geraci, A; Gilbert, C; Gold, M; Gooch, C; Gradwohl, KP; Green, MP; Grinyer, GF; Grobov, A; Gruszko, J; Guinn, I; Guiseppe, VE; Gurentsov, V; Gurov, Y; Gusev, K; Hacket, B; Hagemann, F; Hakenmüeller, J; Haranczyk, M; Hauertmann, L; Haufe, CR; Hayward, C; Heffron, B; Henkes, F; Henning, R; Aguilar, D Hervas; Hinton, J; Hodak, R; Hoffmann, H; Hofmann, W; Hostiuc, A; Huang, J; Hult, M; Mirza, M Ibrahim; Jochum, J; Jones, R; Judson, D; Junker, M; Kaizer, J; Kazalov, V; Kermaïdic, Y; Khushbakht, H; Kidd, M; Kihm, T; Kilgus, K; Kim, I; Klimenko, A; Knöpfle, KT; Kochetov, O; Konovalov, SI; Kontul, I; Kool, K; Kormos, LL; Kornoukhov, VN; Korosec, M; Krause, P; Kuzminov, VV; López-Castaño, JM; Lang, K; Laubenstein, M; León, E; Lehnert, B; Leonhardt, A; Li, A; Lindner, M; Lippi, I; Liu, X; Liu, J; Loomba, D; Lubashevskiy, A; Lubsandorzhiev, B; Lusardi, N; Müller, Y; Macko, M; Macolino, C; Majorovits, B; Mamedov, F; Maneschg, W; Manzanillas, L; Marshall, G; Martin, RD; Martin, EL; Massarczyk, R; Mei, D; Meijer, SJ; Mertens, S; Misiaszek, M; Mondragon, E; Morella, M; Morgan, B; Mroz, T; Muenstermann, D; Nave, CJ; Nemchenok, I; Neuberger, M; Oli, TK; Gann, G Orebi; Othman, G; Palušova, V; Panth, R; Papp, L; Paudel, LS; Pelczar, K; Perez, J Perez; Pertoldi, L; Pettus, W; Piseri, P; Poon, AWP; Povinec, P; Pullia, A; Radford, DC; Ramachers, YA; Ransom, C; Rauscher, L; Redchuk, M; Reine, AL; Riboldi, S; Rielage, K; Rozov, S; Rukhadze, E; Rumyantseva, N; Runge, J; Ruof, NW; Saakyan, R; Sailer, S; Salamanna, G; Salamida, F; Salvat, DJ; Sandukovsky, V; Schönert, S; Schültz, A; Schütt, M; Schaper, DC; Schreiner, J; Schulz, O; Schuster, M; Schwarz, M; Schwingenheuer, B; Selivanenko, O; Shafiee, M; Shevchik, E; Shirchenko, M; Shitov, Y; Simgen, H; Simkovic, F; Skorokhvatov, M; Slavickova, M; Smolek, K; Smolnikov, A; Solomon, JA; Song, G; Starosta, K; Stekl, I; Stommel, M; Stukov, D; Sumathi, RR; Sweigart, DA; Szczepaniec, K; Taffarello, L; Tagnani, D; Tayloe, R; Tedeschi, D; Turqueti, M; Varner, RL; Vasilyev, S; Veresnikova, A; Vetter, K; Vignoli, C; Vogl, C; Sturm, K von; Waters, D; Waters, JC; Wei, W; Wiesinger, C; Wilkerson, JF; Willers, M; Wiseman, C; Wojcik, M; Wu, VH-S; Xu, W; Yakushev, E; Ye, T; Yu, C-H; Yumatov, V; Zaretski, N; Zeman, J; Zhitnikov, I; Zinatulina, D; Zschocke, A-K; Zsigmond, AJ; Zuber, K; Zuzel, GWe propose the construction of LEGEND-1000, the ton-scale Large Enriched Germanium Experiment for Neutrinoless $\beta \beta$ Decay. This international experiment is designed to answer one of the highest priority questions in fundamental physics. It consists of 1000 kg of Ge detectors enriched to more than 90% in the $^{76}$Ge isotope operated in a liquid argon active shield at a deep underground laboratory. By combining the lowest background levels with the best energy resolution in the field, LEGEND-1000 will perform a quasi-background-free search and can make an unambiguous discovery of neutrinoless double-beta decay with just a handful of counts at the decay $Q$ value. The experiment is designed to probe this decay with a 99.7%-CL discovery sensitivity in the $^{76}$Ge half-life of $1.3\times10^{28}$ years, corresponding to an effective Majorana mass upper limit in the range of 9-21 meV, to cover the inverted-ordering neutrino mass scale with 10 yr of live time.Item Open Access Search for Majoron-emitting modes of $^{136}$Xe double beta decay with the complete EXO-200 datasetKharusi, S Al; Anton, G; Badhrees, I; Barbeau, PS; Beck, D; Belov, V; Bhatta, T; Breidenbach, M; Brunner, T; Cao, GF; Cen, WR; Chambers, C; Cleveland, B; Coon, M; Craycraft, A; Daniels, T; Darroch, L; Daugherty, SJ; Davis, J; Delaquis, S; Mesrobian-Kabakian, A Der; DeVoe, R; Dilling, J; Dolgolenko, A; Dolinski, MJ; Echevers, J; Jr, W Fairbank; Fairbank, D; Farine, J; Feyzbakhsh, S; Fierlinger, P; Fudenberg, D; Gautam, P; Gornea, R; Gratta, G; Hall, C; Hansen, EV; Hoessl, J; Hufschmidt, P; Hughes, M; Iverson, A; Jamil, A; Jessiman, C; Jewell, MJ; Johnson, A; Karelin, A; Kaufman, LJ; Koffas, T; ucken, R Kr; Kuchenkov, A; Kumar, KS; Lan, Y; Larson, A; Lenardo, BG; Leonard, DS; Li, GS; Li, S; Li, Z; Licciardi, C; Lin, YH; MacLellan, R; McElroy, T; Michel, T; Mong, B; Moore, DC; Murray, K; Njoya, O; Nusair, O; Odian, A; Ostrovskiy, I; Perna, A; Piepke, A; Pocar, A; Retiere, F; Robinson, AL; Rowson, PC; Rudde, D; Runge, J; Schmidt, S; Sinclair, D; Skarpaas, K; Soma, AK; Stekhanov, V; Tarka, M; Thibado, S; Todd, J; Tolba, T; Totev, TI; Tsang, R; Veenstra, B; Veeraraghavan, V; Vogel, P; Vuilleumier, J-L; Wagenpfeil, M; Watkins, J; Weber, M; Wen, LJ; Wichoski, U; Wrede, G; Wu, SX; Xia, Q; Yahne, DR; Yang, L; Yen, Y-R; Zeldovich, O Ya; Ziegler, TA search for Majoron-emitting modes of the neutrinoless double-beta decay of $^{136}$Xe is performed with the full EXO-200 dataset. This dataset consists of a total $^{136}$Xe exposure of 234.1 kg$\cdot$yr, and includes data with detector upgrades that have improved the energy threshold relative to previous searches. A lower limit of T$_{1/2}^{\rm{^{136}Xe}}>$4.3$\cdot$10$^{24}$ yr at 90\% C.L. on the half-life of the spectral index $n=1$ Majoron decay was obtained, a factor of 3.6 more stringent than the previous limit from EXO-200, corresponding to a constraint on the Majoron-neutrino coupling constant of $|\langle g_{ee}^{M}\rangle|$$<(0.4$-$0.9)\cdot10^{-5}$. The lower threshold and the additional data taken resulted in a factor 8.4 improvement for the $n=7$ mode compared to the previous EXO search. This search provides the most stringent limits to-date on the Majoron-emitting decays of $^{136}$Xe with spectral indices $n=1,2,3,$ and 7.Item Open Access Simulating the neutrino flux from the Spallation Neutron Source for the COHERENT experimentCollaboration, COHERENT; Akimov, D; An, P; Awe, C; Barbeau, PS; Becker, B; Belov, V; Bernardi, I; Blackston, MA; Bock, C; Bolozdynya, A; Browning, J; Cabrera-Palmer, B; Chernyak, D; Conley, E; Daughhetee, J; Detwiler, J; Ding, K; Durand, MR; Efremenko, Y; Elliott, SR; Fabris, L; Febbraro, M; Galambos, J; Rosso, A Gallo; Galindo-Uribarri, A; Green, MP; Heath, MR; Hedges, S; Hoang, D; Hughes, M; Iverson, E; Johnson, T; Khromov, A; Konovalov, A; Kozlova, E; Kumpan, A; Li, L; Link, JM; Liu, J; Mann, K; Markoff, DM; Mastroberti, J; McIntyre, M; Mueller, PE; Newby, J; Parno, DS; Penttila, SI; Pershey, D; Rapp, R; Ray, H; Raybern, J; Razuvaeva, O; Reyna, D; Rich, GC; Rimal, D; Ross, J; Rudik, D; Runge, J; Salvat, DJ; Salyapongse, AM; Scholberg, K; Shakirov, A; Simakov, G; Sinev, G; Snow, WM; Sosnovstsev, V; Suh, B; Tayloe, R; Tellez-Giron-Flores, K; Tolstukhin, I; Trotter, S; Ujah, E; Vanderwerp, J; Varner, RL; Virtue, CJ; Visser, G; Wongjirad, T; Yen, Y-R; Yoo, J; Yu, C-H; Zettlemoyer, J; Zhang, SThe Spallation Neutron Source (SNS) at Oak Ridge National Laboratory is a pulsed source of neutrons and, as a byproduct of this operation, an intense source of pulsed neutrinos via stopped-pion decay. The COHERENT collaboration uses this source to investigate coherent elastic neutrino-nucleus scattering and other physics with a suite of detectors. This work includes a description of our Geant4 simulation of neutrino production at the SNS and the flux calculation which informs the COHERENT studies. We estimate the uncertainty of this calculation at about 10% based on validation against available low-energy pion production data.Item Open Access The EXO-200 detector, part II: Auxiliary SystemsAckerman, N; Albert, J; Auger, M; Auty, DJ; Badhrees, I; Barbeau, PS; Bartoszek, L; Baussan, E; Belov, V; Benitez-Medina, C; Bhatta, T; Breidenbach, M; Brunner, T; Cao, GF; Cen, WR; Chambers, C; Cleveland, B; Conley, R; Cook, S; Coon, M; Craddock, W; Craycraft, A; Cree, W; Daniels, T; Darroch, L; Daugherty, SJ; Daughhetee, J; Davis, CG; Davis, J; Delaquis, S; Mesrobian-Kabakian, A Der; deVoe, R; Didberidze, T; Dilling, J; Dobi, A; Dolgolenko, AG; Dolinski, MJ; Dunford, M; Echevers, J; Espic, L; Jr, W Fairbank; Fairbank, D; Farine, J; Feldmeier, W; Feyzbakhsh, S; Fierlinger, P; Fouts, K; Franco, D; Freytag, D; Fudenberg, D; Gautam, P; Giroux, G; Gornea, R; Graham, K; Gratta, G; Hagemann, C; Hall, C; Hall, K; Haller, G; Hansen, EV; Hargrove, C; Herbst, R; Herrin, S; Hodgson, J; Hughes, M; Iverson, A; Jamil, A; Jessiman, C; Jewell, MJ; Johnson, A; Johnson, TN; Johnston, S; Karelin, A; Kaufman, LJ; Killick, R; Koffas, T; Kravitz, S; Krücken, R; Kuchenkov, A; Kumar, KS; Lan, Y; Larson, A; Leonard, DS; Leonard, F; LePort, F; Li, GS; Li, S; Li, Z; Licciardi, C; Lin, YH; Mackay, D; MacLellan, R; Marino, M; Martin, J-M; Martin, Y; McElroy, T; McFarlane, K; Michel, T; Mong, B; Moore, DC; Murray, K; Neilson, R; Njoya, O; Nusair, O; O'Sullivan, K; Odian, A; Ostrovskiy, I; Ouellet, C; Piepke, A; Pocar, A; Prescott, CY; Pushkin, K; Retiere, F; Rivas, A; Robinson, AL; Rollin, E; Rowson, PC; Rozo, MP; Runge, J; Russell, JJ; Schmidt, S; Schubert, A; Sinclair, D; Skarpaas, K; Slutsky, S; Smith, E; Soma, AK; Stekhanov, V; Strickland, V; Swift, M; Tarka, M; Todd, J; Tolba, T; Tosi, D; Totev, TI; Tsang, R; Twelker, K; Veenstra, B; Veeraraghavan, V; Vuilleumier, J-L; Vuilleumier, J-M; Wagenpfeil, M; Waite, A; Walton, J; Walton, T; Wamba, K; Watkins, J; Weber, M; Wen, LJ; Wichoski, U; Wittgen, M; Wodin, J; Wood, J; Wrede, G; Wu, SX; Xia, Q; Yang, L; Yen, Y-R; Zeldovich, O Ya; Ziegler, TThe EXO-200 experiment searched for neutrinoless double-beta decay of $^{136}$Xe with a single-phase liquid xenon detector. It used an active mass of 110 kg of 80.6%-enriched liquid xenon in an ultra-low background time projection chamber with ionization and scintillation detection and readout. This paper describes the design and performance of the various support systems necessary for detector operation, including cryogenics, xenon handling, and controls. Novel features of the system were driven by the need to protect the thin-walled detector chamber containing the liquid xenon, to achieve high chemical purity of the Xe, and to maintain thermal uniformity across the detector.