Browsing by Subject "p300-CBP Transcription Factors"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access HLA-B-associated transcript 3 (Bat3)/Scythe is essential for p300-mediated acetylation of p53.(Genes Dev, 2007-04-01) Sasaki, Toru; Gan, Eugene C; Wakeham, Andrew; Kornbluth, Sally; Mak, Tak W; Okada, HitoshiIn response to DNA damage, p53 undergoes post-translational modifications (including acetylation) that are critical for its transcriptional activity. However, the mechanism by which p53 acetylation is regulated is still unclear. Here, we describe an essential role for HLA-B-associated transcript 3 (Bat3)/Scythe in controlling the acetylation of p53 required for DNA damage responses. Depletion of Bat3 from human and mouse cells markedly impairs p53-mediated transactivation of its target genes Puma and p21. Although DNA damage-induced phosphorylation, stabilization, and nuclear accumulation of p53 are not significantly affected by Bat3 depletion, p53 acetylation is almost completely abolished. Bat3 forms a complex with p300, and an increased amount of Bat3 enhances the recruitment of p53 to p300 and facilitates subsequent p53 acetylation. In contrast, Bat3-depleted cells show reduced p53-p300 complex formation and decreased p53 acetylation. Furthermore, consistent with our in vitro findings, thymocytes from Bat3-deficient mice exhibit reduced induction of puma and p21, and are resistant to DNA damage-induced apoptosis in vivo. Our data indicate that Bat3 is a novel and essential regulator of p53-mediated responses to genotoxic stress, and that Bat3 controls DNA damage-induced acetylation of p53.Item Open Access Kruppel-like factor 15 is critical for vascular inflammation.(The Journal of clinical investigation, 2013-10) Lu, Yuan; Zhang, Lisheng; Liao, Xudong; Sangwung, Panjamaporn; Prosdocimo, Domenick A; Zhou, Guangjin; Votruba, Alexander R; Brian, Leigh; Han, Yuh Jung; Gao, Huiyun; Wang, Yunmei; Shimizu, Koichi; Weinert-Stein, Kaitlyn; Khrestian, Maria; Simon, Daniel I; Freedman, Neil J; Jain, Mukesh KActivation of cells intrinsic to the vessel wall is central to the initiation and progression of vascular inflammation. As the dominant cellular constituent of the vessel wall, vascular smooth muscle cells (VSMCs) and their functions are critical determinants of vascular disease. While factors that regulate VSMC proliferation and migration have been identified, the endogenous regulators of VSMC proinflammatory activation remain incompletely defined. The Kruppel-like family of transcription factors (KLFs) are important regulators of inflammation. In this study, we identified Kruppel-like factor 15 (KLF15) as an essential regulator of VSMC proinflammatory activation. KLF15 levels were markedly reduced in human atherosclerotic tissues. Mice with systemic and smooth muscle-specific deficiency of KLF15 exhibited an aggressive inflammatory vasculopathy in two distinct models of vascular disease: orthotopic carotid artery transplantation and diet-induced atherosclerosis. We demonstrated that KLF15 alters the acetylation status and activity of the proinflammatory factor NF-κB through direct interaction with the histone acetyltransferase p300. These studies identify a previously unrecognized KLF15-dependent pathway that regulates VSMC proinflammatory activation.