Browsing by Subject "p38 MAPK"
Results Per Page
Sort Options
Item Open Access Emerging treatment options to improve cardiovascular outcomes in patients with acute coronary syndrome: focus on losmapimod.(Drug Des Devel Ther, 2015) Kragholm, Kristian; Newby, Laura Kristin; Melloni, ChiaraEach year, despite optimal use of recommended acute and secondary prevention therapies, 4%-5% of patients with acute coronary syndrome (ACS) experience relapse of ACS or other cardiovascular events including stroke, heart failure, or sudden cardiac death after the index ACS. The sudden atherosclerotic plaque rupture leading to an ACS event is often accompanied by inflammation, which is thought to be a key pathogenic pathway to these excess cardiovascular events. Losmapimod is a novel, oral p38 mitogen-activated protein kinase (MAPK) inhibitor that targets MAPKs activated in macrophages, myocardium, and endothelial cells that occur as a part of global coronary vascular inflammation following plaque rupture. This review aims to 1) discuss the pathophysiological pathways through which p38 MAPKs may play key roles in initiation and progression of inflammatory disease and how losmapimod is thought to counteract these p38 MAPKs, and 2) to describe the efficacy and safety data for losmapimod obtained from preclinical studies and randomized controlled trials that support the hypothesis that it has promise as a treatment for patients with ACS.Item Open Access Regulation of Mnk1 by p38α MAPK in Stress Mediated Translation Initiation(2014) Gemberling, Sarah LawsonMultiple signaling pathways control protein synthesis by modulating translation initiation factors. Map Kinase Integrating Kinase 1 (Mnk1) relays signals to its major downstream target eIF4E. Activation of Mnk1 and subsequent phosphorylation of eIF4E results in changes in translation rates for subsets of mRNAs. Both the Erk1/2 and p38 MAPK pathways activate Mnk1 meaning that Mnk1 responds to growth signals through Erk1/2 and stress signals through p38 MAPK. However, it is not clear how Mnk1 mediates translational changes specific to each pathway. We investigated the activation of Mnk1 by stress and cytokines through the p38 MAPK pathway. We found that of the four different p38 MAPK isoforms, p38α alone controls acute stress and cytokine signaling to translation machinery. Furthermore, this regulatory axis is greatly diminished in neurons. We discovered that p38α expression is repressed in the brain due to two neuron-selective microRNAs, miR-124 and -128. Next, we investigated the mechanism of p38α mediated Mnk1 activation to see if it differed from Erk1/2 mediated activation. Looking at the induced binding of Mnk1 to eIF4G, we found that the dissociation rate varies depending on the activating pathways. This shows that Mnk1 is not a true convergence point of p38 and Erk1/2 MAPK pathways resulting in identical downstream effects, but that Mnk1 mediates pathway specific effects on translation factors.
Item Open Access The NMDA receptor subunit GluN3A regulates synaptic activity-induced and myocyte enhancer factor 2C (MEF2C)-dependent transcription.(The Journal of biological chemistry, 2020-05-11) Chen, Liang-Fu; Lyons, Michelle R; Liu, Fang; Green, Matthew V; Hedrick, Nathan G; Williams, Ashley B; Narayanan, Arthy; Yasuda, Ryohei; West, Anne EN-methyl-D-aspartate type glutamate receptors (NMDARs) are key mediators of synaptic activity-regulated gene transcription in neurons, both during development and in the adult brain. Developmental differences in the glutamate receptor ionotropic NMDA 2 (GluN2) subunit composition of NMDARs determines whether they activate the transcription factor cAMP-responsive element-binding protein 1 (CREB). However, whether the developmentally regulated GluN3A subunit also modulates NMDAR-induced transcription is unknown. Here, using an array of techniques, including quantitative real-time PCR, immunostaining, reporter gene assays, RNA sequencing, and two-photon glutamate uncaging with calcium imaging, we show that knocking down GluN3A in rat hippocampal neurons promotes the inducible transcription of a subset of NMDAR-sensitive genes. We found that this enhancement is mediated by the accumulation of phosphorylated p38 mitogen-activated protein (MAP) kinase in the nucleus, which drives the activation of the transcription factor myocyte enhancer factor 2C (MEF2C) and promotes the transcription of a subset of synaptic activity-induced genes, including brain-derived neurotrophic factor (Bdnf) and activity-regulated cytoskeleton-associated protein (Arc). Our evidence that GluN3A regulates MEF2C-dependent transcription reveals a novel mechanism by which NMDAR subunit composition confers specificity to the program of synaptic activity-regulated gene transcription in developing neurons.