Browsing by Subject "pcr"
Results Per Page
Sort Options
Item Open Access Accelerated Sepsis Diagnosis by Seamless Integration of Nucleic Acid Purification and Detection(2014) Hsu, BangNingBackground The diagnosis of sepsis is challenging because the infection can be caused by more than 50 species of pathogens that might exist in the bloodstream in very low concentrations, e.g., less than 1 colony-forming unit/ml. As a result, among the current sepsis diagnostic methods there is an unsatisfactory trade-off between the assay time and the specificity of the derived diagnostic information. Although the present qPCR-based test is more specific than biomarker detection and faster than culturing, its 6 ~ 10 hr turnaround remains suboptimal relative to the 7.6%/hr rapid deterioration of the survival rate, and the 3 hr hands-on time is labor-intensive. To address these issues, this work aims to utilize the advances in microfluidic technologies to expedite and automate the ``nucleic acid purification - qPCR sequence detection'' workflow.
Methods and Results This task is evaluated to be best approached by combining immiscible phase filtration (IPF) and digital microfluidic droplet actuation (DM) on a fluidic device. In IPF, as nucleic acid-bound magnetic beads are transported from an aqueous phase to an immiscible phase, the carryover of aqueous contaminants is minimized by the high interfacial tension. Thus, unlike a conventional bead-based assay, the necessary degree of purification can be attained in a few wash steps. After IPF reduces the sample volume from a milliliter-sized lysate to a microliter-sized eluent, DM can be used to automatically prepare the PCR mixture. This begins with compartmenting the eluent in accordance with the desired number of multiplex qPCR reactions, and then transporting droplets of the PCR reagents to mix with the eluent droplets. Under the outlined approach, the IPF - DM integration should lead to a notably reduced turnaround and a hands-free ``lysate-to-answer'' operation.
As the first step towards such a diagnostic device, the primary objective of this thesis is to verify the feasibility of the IPF - DM integration. This is achieved in four phases. First, the suitable assays, fluidic device, and auxiliary systems are developed. Second, the extent of purification obtained per IPF wash, and hence the number of washes needed for uninhibited qPCR, are estimated via off-chip UV absorbance measurement and on-chip qPCR. Third, the performance of on-chip qPCR, particularly the copy number - threshold cycle correlation, is characterized. Lastly, the above developments accumulate to an experiment that includes the following on-chip steps: DNA purification by IPF, PCR mixture preparation via DM, and target quantification using qPCR - thereby demonstrating the core procedures in the proposed approach.
Conclusions It is proposed to expedite and automate qPCR-based multiplex sparse pathogen detection by combining IPF and DM on a fluidic device. As a start, this work demonstrated the feasibility of the IPF - DM integration. However, a more thermally robust device structure will be needed for later quantitative investigations, e.g., improving the bead - buffer mixing. Importantly, evidences indicate that future iterations of the IPF - DM fluidic device could reduce the sample-to-answer time by 75% to 1.5 hr and decrease the hands-on time by 90% to approximately 20 min.
Item Open Access Precise pattern of recombination in serotonergic and hypothalamic neurons in a Pdx1-cre transgenic mouse line(2010) Honig, Gerard; Liou, Angela; Berger, Miles; German, Michael S; Tecott, Laurence HBackground: Multicellular organisms are characterized by a remarkable diversity of morphologically distinct and functionally specialized cell types. Transgenic techniques for the manipulation of gene expression in specific cellular populations are highly useful for elucidating the development and function of these cellular populations. Given notable similarities in developmental gene expression between pancreatic beta cells and serotonergic neurons, we examined the pattern of Cre-mediated recombination in the nervous system of a widely used mouse line, Pdx1-cre (formal designation, Tg(Ipf1-cre)89.1Dam), in which the expression of Cre recombinase is driven by regulatory elements upstream of the pdx1 (pancreatic-duodenal homeobox 1) gene. Methods: Single (hemizygous) transgenic mice of the pdx1-cre(Cre/0) genotype were bred to single (hemizygous) transgenic reporter mice (Z/EG and rosa26R lines). Recombination pattern was examined in offspring using whole-mount and sectioned histological preparations at e9.5, e10.5, e11.5, e16.5 and adult developmental stages. Results: In addition to the previously reported pancreatic recombination, recombination in the developing nervous system and inner ear formation was observed. In the central nervous system, we observed a highly specific pattern of recombination in neuronal progenitors in the ventral brainstem and diencephalon. In the rostral brainstem (r1-r2), recombination occurred in newborn serotonergic neurons. In the caudal brainstem, recombination occurred in non-serotonergic cells. In the adult, this resulted in reporter expression in the vast majority of forebrain-projecting serotonergic neurons (located in the dorsal and median raphe nuclei) but in none of the spinal cord-projecting serotonergic neurons of the caudal raphe nuclei. In the adult caudal brainstem, reporter expression was widespread in the inferior olive nucleus. In the adult hypothalamus, recombination was observed in the arcuate nucleus and dorsomedial hypothalamus. Recombination was not observed in any other region of the central nervous system. Neuronal expression of endogenous pdx1 was not observed. Conclusions: The Pdx1-cre mouse line, and the regulatory elements contained in the corresponding transgene, could be a valuable tool for targeted genetic manipulation of developing forebrain-projecting serotonergic neurons and several other unique neuronal sub-populations. These results suggest that investigators employing this mouse line for studies of pancreatic function should consider the possible contributions of central nervous system effects towards resulting phenotypes.