Browsing by Subject "photon-counting CT"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access A systematic assessment and optimization of photon-counting CT for lung density quantifications.(Medical physics, 2024-02) Sotoudeh-Paima, Saman; Segars, W Paul; Ghosh, Dhrubajyoti; Luo, Sheng; Samei, Ehsan; Abadi, EhsanBackground
Photon-counting computed tomography (PCCT) has recently emerged into clinical use; however, its optimum imaging protocols and added benefits remains unknown in terms of providing more accurate lung density quantification compared to energy-integrating computed tomography (EICT) scanners.Purpose
To systematically assess the performance of a clinical PCCT scanner for lung density quantifications and compare it against EICT.Methods
This cross-sectional study involved a retrospective analysis of subjects scanned (August-December 2021) using a clinical PCCT system. The influence of altering reconstruction parameters was studied (reconstruction kernel, pixel size, slice thickness). A virtual CT dataset of anthropomorphic virtual subjects was acquired to demonstrate the correspondence of findings to clinical dataset, and to perform systematic imaging experiments, not possible using human subjects. The virtual subjects were imaged using a validated, scanner-specific CT simulator of a PCCT and two EICT (defined as EICT A and B) scanners. The images were evaluated using mean absolute error (MAE) of lung and emphysema density against their corresponding ground truth.Results
Clinical and virtual PCCT datasets showed similar trends, with sharper kernels and smaller voxel sizes increasing percentage of low-attenuation areas below -950 HU (LAA-950) by up to 15.7 ± 6.9% and 11.8 ± 5.5%, respectively. Under the conditions studied, higher doses, thinner slices, smaller pixel sizes, iterative reconstructions, and quantitative kernels with medium sharpness resulted in lower lung MAE values. While using these settings for PCCT, changes in the dose level (13 to 1.3 mGy), slice thickness (0.4 to 1.5 mm), pixel size (0.49 to 0.98 mm), reconstruction technique (70 keV-VMI to wFBP), and kernel (Qr48 to Qr60) increased lung MAE by 15.3 ± 2.0, 1.4 ± 0.6, 2.2 ± 0.3, 4.2 ± 0.8, and 9.1 ± 1.6 HU, respectively. At the optimum settings identified per scanner, PCCT images exhibited lower lung and emphysema MAE than those of EICT scanners (by 2.6 ± 1.0 and 9.6 ± 3.4 HU, compared to EICT A, and by 4.8 ± 0.8 and 7.4 ± 2.3 HU, compared to EICT B). The accuracy of lung density measurements was correlated with subjects' mean lung density (p < 0.05), measured by PCCT at optimum setting under the conditions studied.Conclusion
Photon-counting CT demonstrated superior performance in density quantifications, with its influences of imaging parameters in line with energy-integrating CT scanners. The technology offers improvement in lung quantifications, thus demonstrating potential toward more objective assessment of respiratory conditions.Item Open Access Material decomposition from photon-counting CT using a convolutional neural network and energy-integrating CT training labels.(Physics in medicine and biology, 2022-06-29) Nadkarni, Rohan; Allphin, Alex; Clark, Darin P; Badea, Cristian TObjective
Photon-counting CT (PCCT) has better dose efficiency and spectral resolution than energy-integrating CT, which is advantageous for material decomposition. Unfortunately, the accuracy of PCCT-based material decomposition is limited due to spectral distortions in the photon-counting detector (PCD).Approach
In this work, we demonstrate a deep learning (DL) approach that compensates for spectral distortions in the PCD and improves accuracy in material decomposition by using decomposition maps provided by high-dose multi-energy-integrating detector (EID) data as training labels. We use a 3D U-net architecture and compare networks with PCD filtered backprojection (FBP) reconstruction (FBP2Decomp), PCD iterative reconstruction (Iter2Decomp), and PCD decomposition (Decomp2Decomp) as the input.Main results
We found that our Iter2Decomp approach performs best, but DL outperforms matrix inversion decomposition regardless of the input. Compared to PCD matrix inversion decomposition, Iter2Decomp gives 27.50% lower root mean squared error (RMSE) in the iodine (I) map and 59.87% lower RMSE in the photoelectric effect (PE) map. In addition, it increases the structural similarity (SSIM) by 1.92%, 6.05%, and 9.33% in the I, Compton scattering (CS), and PE maps, respectively. When taking measurements from iodine and calcium vials, Iter2Decomp provides excellent agreement with multi-EID decomposition. One limitation is some blurring caused by our DL approach, with a decrease from 1.98 line pairs/mm at 50% modulation transfer function (MTF) with PCD matrix inversion decomposition to 1.75 line pairs/mm at 50% MTF when using Iter2Decomp.Significance
Overall, this work demonstrates that our DL approach with high-dose multi-EID derived decomposition labels is effective at generating more accurate material maps from PCD data. More accurate preclinical spectral PCCT imaging such as this could serve for developing nanoparticles that show promise in the field of theranostics (therapy and diagnostics).Item Open Access MCR toolkit: A GPU-based toolkit for multi-channel reconstruction of preclinical and clinical x-ray CT data.(Medical physics, 2023-06) Clark, Darin P; Badea, Cristian TBackground
The advancement of x-ray CT into the domains of photon counting spectral imaging and dynamic cardiac and perfusion imaging has created many new challenges and opportunities for clinicians and researchers. To address challenges such as dose constraints and scanning times while capitalizing on opportunities such as multi-contrast imaging and low-dose coronary angiography, these multi-channel imaging applications require a new generation of CT reconstruction tools. These new tools should exploit the relationships between imaging channels during reconstruction to set new image quality standards while serving as a platform for direct translation between the preclinical and clinical domains.Purpose
We outline and demonstrate a new Multi-Channel Reconstruction (MCR) Toolkit for GPU-based analytical and iterative reconstruction of preclinical and clinical multi-energy and dynamic x-ray CT data. To promote open science, open-source distribution of the Toolkit will coincide with the release of this publication (GPL v3; gitlab.oit.duke.edu/dpc18/mcr-toolkit-public).Methods
The MCR Toolkit source code is implemented in C/C++ and NVIDIA's CUDA GPU programming interface, with scripting support from MATLAB and Python. The Toolkit implements matched, separable footprint CT reconstruction operators for projection and backprojection in two geometries: planar, cone-beam CT (CBCT) and 3rd generation, cylindrical multi-detector row CT (MDCT). Analytical reconstruction is performed using filtered backprojection (FBP) for circular CBCT, weighted FBP (WFBP) for helical CBCT, and cone-parallel projection rebinning followed by WFBP for MDCT. Arbitrary combinations of energy and temporal channels are iteratively reconstructed under a generalized multi-channel signal model for joint reconstruction. We solve this generalized model algebraically using the split Bregman optimization method and the BiCGSTAB(l) linear solver interchangeably for both CBCT and MDCT data. Rank-sparse kernel regression (RSKR) and patch-based singular value thresholding (pSVT) are used to regularize the energy and time dimensions, respectively. Under a Gaussian noise model, regularization parameters are estimated automatically from the input data, dramatically reducing algorithm complexity for end users. Multi-GPU parallelization of the reconstruction operators is supported to manage reconstruction times.Results
Denoising with RSKR and pSVT and post-reconstruction material decomposition are illustrated with preclinical and clinical cardiac photon-counting (PC)CT data. A digital MOBY mouse phantom with cardiac motion is used to illustrate single energy (SE), multi-energy (ME), time resolved (TR), and combined multi-energy and time-resolved (METR) helical, CBCT reconstruction. A fixed set of projection data is used across all reconstruction cases to demonstrate the Toolkit's robustness to increasing data dimensionality. Identical reconstruction code is applied to in vivo cardiac PCCT data acquired in a mouse model of atherosclerosis (METR). Clinical cardiac CT reconstruction is illustrated using the XCAT phantom and the DukeSim CT simulator, while dual-source, dual-energy CT reconstruction is illustrated for data acquired with a Siemens Flash scanner. Benchmarking results with NVIDIA RTX 8000 GPU hardware demonstrate 61%-99% efficiency in scaling computation from one to four GPUs for these reconstruction problems.Conclusions
The MCR Toolkit provides a robust solution for temporal and spectral x-ray CT reconstruction problems and was built from the ground up to facilitate translation of CT research and development between preclinical and clinical applications.