Browsing by Subject "physics.soc-ph"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Evaluating Partisan Gerrymandering in Wisconsin(2017-09-07) Ravier, R; Mattingly, J; Herschlag, GJWe examine the extent of gerrymandering for the 2010 General Assembly district map of Wisconsin. We find that there is substantial variability in the election outcome depending on what maps are used. We also found robust evidence that the district maps are highly gerrymandered and that this gerrymandering likely altered the partisan make up of the Wisconsin General Assembly in some elections. Compared to the distribution of possible redistricting plans for the General Assembly, Wisconsin's chosen plan is an outlier in that it yields results that are highly skewed to the Republicans when the statewide proportion of Democratic votes comprises more than 50-52% of the overall vote (with the precise threshold depending on the election considered). Wisconsin's plan acts to preserve the Republican majority by providing extra Republican seats even when the Democratic vote increases into the range when the balance of power would shift for the vast majority of redistricting plans.Item Open Access Optimal Legislative County Clustering in North CarolinaCarter, D; Hunter, Z; Teague, D; Herschlag, G; Mattingly, JNorth Carolina's constitution requires that state legislative districts should not split counties. However, counties must be split to comply with the "one person, one vote" mandate of the U.S. Supreme Court. Given that counties must be split, the North Carolina legislature and courts have provided guidelines that seek to reduce counties split across districts while also complying with the "one person, one vote" criteria. Under these guidelines, the counties are separated into clusters. The primary goal of this work is to develop, present, and publicly release an algorithm to optimally cluster counties according to the guidelines set by the court in 2015. We use this tool to investigate the optimality and uniqueness of the enacted clusters under the 2017 redistricting process. We verify that the enacted clusters are optimal, but find other optimal choices. We emphasize that the tool we provide lists \textit{all} possible optimal county clusterings. We also explore the stability of clustering under changing statewide populations and project what the county clusters may look like in the next redistricting cycle beginning in 2020/2021.Item Open Access Quantifying Gerrymandering in North CarolinaHerschlag, G; Kang, HS; Luo, J; Graves, CV; Bangia, S; Ravier, R; Mattingly, JCUsing an ensemble of redistricting plans, we evaluate whether a given political districting faithfully represents the geo-political landscape. Redistricting plans are sampled by a Monte Carlo algorithm from a probability distribution that adheres to realistic and non-partisan criteria. Using the sampled redistricting plans and historical voting data, we produce an ensemble of elections that reveal geo-political structure within the state. We showcase our methods on the two most recent districtings of NC for the U.S. House of Representatives, as well as a plan drawn by a bipartisan redistricting panel. We find the two state enacted plans are highly atypical outliers whereas the bipartisan plan accurately represents the ensemble both in partisan outcome and in the fine scale structure of district-level results.