Browsing by Subject "primate"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Unknown Comparison of gain-like properties of eye position signals in inferior colliculus versus auditory cortex of primates.(Frontiers in integrative neuroscience, 2010-01) Maier, Joost X; Groh, Jennifer MWe evaluated to what extent the influence of eye position in the auditory pathway of primates can be described as a gain field. We compared single unit activity in the inferior colliculus (IC), core auditory cortex (A1) and the caudomedial belt (CM) region of auditory cortex (AC) in primates, and found stronger evidence for gain field-like interactions in the IC than in AC. In the IC, eye position signals showed both multiplicative and additive interactions with auditory responses, whereas in AC the effects were not as well predicted by a gain field model.Item Unknown Cortical neurons multiplex reward-related signals along with sensory and motor information.(Proc Natl Acad Sci U S A, 2017-06-13) Ramakrishnan, Arjun; Byun, Yoon Woo; Rand, Kyle; Pedersen, Christian E; Lebedev, Mikhail A; Nicolelis, Miguel ALRewards are known to influence neural activity associated with both motor preparation and execution. This influence can be exerted directly upon the primary motor (M1) and somatosensory (S1) cortical areas via the projections from reward-sensitive dopaminergic neurons of the midbrain ventral tegmental areas. However, the neurophysiological manifestation of reward-related signals in M1 and S1 are not well understood. Particularly, it is unclear how the neurons in these cortical areas multiplex their traditional functions related to the control of spatial and temporal characteristics of movements with the representation of rewards. To clarify this issue, we trained rhesus monkeys to perform a center-out task in which arm movement direction, reward timing, and magnitude were manipulated independently. Activity of several hundred cortical neurons was simultaneously recorded using chronically implanted microelectrode arrays. Many neurons (9-27%) in both M1 and S1 exhibited activity related to reward anticipation. Additionally, neurons in these areas responded to a mismatch between the reward amount given to the monkeys and the amount they expected: A lower-than-expected reward caused a transient increase in firing rate in 60-80% of the total neuronal sample, whereas a larger-than-expected reward resulted in a decreased firing rate in 20-35% of the neurons. Moreover, responses of M1 and S1 neurons to reward omission depended on the direction of movements that led to those rewards. These observations suggest that sensorimotor cortical neurons corepresent rewards and movement-related activity, presumably to enable reward-based learning.Item Unknown Genetic influences on social attention in free-ranging rhesus macaques.(Animal behaviour, 2015-05) Watson, KK; Li, D; Brent, LJN; Horvath, JE; Gonzalez-Martinez, J; Lambides, Ruiz-A; Robinson, AG; Skene, JHP; Platt, MLAn ethological approach to attention predicts that organisms orient preferentially to valuable sources of information in the environment. For many gregarious species, orienting to other individuals provides valuable social information but competes with food acquisition, water consumption and predator avoidance. Individual variation in vigilance behaviour in humans spans a continuum from inattentive to pathological levels of interest in others. To assess the comparative biology of this behavioural variation, we probed vigilance rates in free-ranging macaques during water drinking, a behaviour incompatible with the gaze and postural demands of vigilance. Males were significantly more vigilant than females. Moreover, vigilance showed a clear genetic component, with an estimated heritability of 12%. Monkeys carrying a relatively infrequent 'long' allele of TPH2, a regulatory gene that influences serotonin production in the brain, were significantly less vigilant compared to monkeys that did not carry the allele. These findings resonate with the hypothesis that the serotonin pathway regulates vigilance in primates and by extension provoke the idea that individual variation in vigilance and its underlying biology may be adaptive rather than pathological.