Browsing by Subject "proportional hazards model"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Comparison of regression imputation methods of baseline covariates that predict survival outcomes.(Journal of clinical and translational science, 2020-09) Solomon, Nicole; Lokhnygina, Yuliya; Halabi, SusanIntroduction
Missing data are inevitable in medical research and appropriate handling of missing data is critical for statistical estimation and making inferences. Imputation is often employed in order to maximize the amount of data available for statistical analysis and is preferred over the typically biased output of complete case analysis. This article examines several types of regression imputation of missing covariates in the prediction of time-to-event outcomes subject to right censoring.Methods
We evaluated the performance of five regression methods in the imputation of missing covariates for the proportional hazards model via summary statistics, including proportional bias and proportional mean squared error. The primary objective was to determine which among the parametric generalized linear models (GLMs) and least absolute shrinkage and selection operator (LASSO), and nonparametric multivariate adaptive regression splines (MARS), support vector machine (SVM), and random forest (RF), provides the "best" imputation model for baseline missing covariates in predicting a survival outcome.Results
LASSO on an average observed the smallest bias, mean square error, mean square prediction error, and median absolute deviation (MAD) of the final analysis model's parameters among all five methods considered. SVM performed the second best while GLM and MARS exhibited the lowest relative performances.Conclusion
LASSO and SVM outperform GLM, MARS, and RF in the context of regression imputation for prediction of a time-to-event outcome.Item Open Access Sample size calculation for studies with grouped survival data.(Statistics in medicine, 2018-06-10) Li, Zhiguo; Wang, Xiaofei; Wu, Yuan; Owzar, KourosGrouped survival data arise often in studies where the disease status is assessed at regular visits to clinic. The time to the event of interest can only be determined to be between two adjacent visits or is right censored at one visit. In data analysis, replacing the survival time with the endpoint or midpoint of the grouping interval leads to biased estimators of the effect size in group comparisons. Prentice and Gloeckler developed a maximum likelihood estimator for the proportional hazards model with grouped survival data and the method has been widely applied. Previous work on sample size calculation for designing studies with grouped data is based on either the exponential distribution assumption or the approximation of variance under the alternative with variance under the null. Motivated by studies in HIV trials, cancer trials and in vitro experiments to study drug toxicity, we develop a sample size formula for studies with grouped survival endpoints that use the method of Prentice and Gloeckler for comparing two arms under the proportional hazards assumption. We do not impose any distributional assumptions, nor do we use any approximation of variance of the test statistic. The sample size formula only requires estimates of the hazard ratio and survival probabilities of the event time of interest and the censoring time at the endpoints of the grouping intervals for one of the two arms. The formula is shown to perform well in a simulation study and its application is illustrated in the three motivating examples.