Browsing by Subject "rhesus macaque"
Results Per Page
Sort Options
Item Open Access Brain-Machine-Brain Interface(2011) O'Doherty, Joseph EmmanuelBrain-machine interfaces (BMIs) use neuronal activity to control external actuators. As such, they show great promise for restoring motor and communication abilities in persons with paralysis or debilitating neurological disorders.
While BMIs aim to enact normal sensorimotor functions, so far they have lacked afferent feedback in the form of somatic sensation. This deficiency limits the utility of current BMI designs and may hinder the translation of future clinical BMIs, which will need a means of delivering sensory signals from prosthetic devices back to the user.
This dissertation describes the development of brain-machine-brain interfaces (BMBIs) capable of bidirectional communication with the brain. The interfaces consisted of efferent and afferent modules. The efferent modules decoded motor intentions from the activity of populations of cortical neurons recorded with chronic multielectrode recording arrays. The activity of these ensembles was used to drive the movements of a computer cursor and a realistic upper-limb avatar. The afferent modules encoded tactile feedback about the interactions of the avatar with virtual objects through patterns of intracortical microstimulation (ICMS).
I first show that a direct intracortical signal can be used to instruct rhesus monkeys about the direction of a reach to make with a BMI. Rhesus monkeys placed an actuator over an instruction target and obtained, from the target's artificial texture, information about the correct reach path. Initially these somatosensory instructions took the form of vibrotactile stimulation of the hands. Next, ICMS of primary somatosensory cortex (S1) in one monkey and posterior parietal cortex (PPC) in another was substituted for this peripheral somatosensory signal. Finally, the monkeys made direct brain-controlled reaches using the activity of ensembles of primary motor cortex (M1) cells, conditional on the ICMS cues. The monkey receiving ICMS of S1 was able to achieve the same level of proficiency with ICMS as with the stimulus delivered to the skin of the hand. The monkey receiving ICMS of PPC was unable to perform the task above chance. This experiment indicates that ICMS of S1 can form the basis of an afferent prosthetic input to the brain for guiding brain-controlled prostheses.
I next show that ICMS of S1 can provide feedback about the interactions of a virtual-reality upper-limb avatar and virtual objects, enabling active touch. Rhesus monkeys initially controlled the avatar with the movements of their arms and used it to search through sets of up to three objects. Feedback in the form of temporal patterns of ICMS occurred whenever the avatar touched a virtual object. Monkeys learned to use this feedback to find the objects with particular artificial textures, as encoded by the ICMS patterns, and select those associated with reward while avoiding selecting the non-rewarded objects. Next, the control of the avatar was switched to direct brain-control and the monkeys continued to move the avatar with motor commands derived from the extracellular neuronal activity of M1 cells. The afferent and efferent modules of this BMBI were temporally interleaved, and as such did not interfere with each other, yet allowed effectively concurrent operation. Cortical motor neurons were measured while the monkey passively observed the movements of the avatar and were found to be modulated, a result that suggests that concurrent visual and artificial somatosensory feedback lead to the incorporation of the avatar into the monkey's internal brain representation.
Finally, I probed the sensitivity of S1 to precise temporal patterns of ICMS. Monkeys were trained to discriminate between periodic and aperiodic ICMS pulse trains. The periodic pulse-trains consisted of 200 Hz bursts at a 10 Hz secondary frequency. The aperiodic pulse trains had a distorted periodicity and consisted of 200 Hz bursts at a variable instantaneous secondary frequency. The statistics of the aperiodic pulse trains were drawn from a gamma distribution with equal mean inter-burst intervals to the periodic pulse trains. The monkeys were able to distinguish periodic pulse trains from aperiodic pulse trains with coefficients of variation of 0.25 or greater. This places an upper-bounds on the communication bandwidth that can be achieved with a single channel of temporal ICMS in S1.
In summary, rhesus monkeys were augmented with a bidirectional neural interface that allowed them to make reaches to objects and discriminate them by their textures--all without making actual movements and without relying on somatic sensation from their real bodies. Both action and perception were mediated by the brain-machine-brain interface. I probed the sensitivity of the afferent leg of the interface to precise temporal patterns of ICMS. Moreover, I describe evidence that the BMBI controlled avatar was incorporated into the monkey's internal brain representation. These results suggest that future clinical neuroprostheses could implement realistic feedback about object-actuator interactions through patterns of ICMS, and that these artificial somatic sensations could lead to the incorporation of the prostheses into the user's body schema.
Item Open Access Determinants of Distractibility in the Rhesus Macaque(2013) Ebitz, Robert B.The visual world is full of potentially important information, but only a subset of the world can be evaluated at any time. An essential function of the central nervous system is to rapidly and adaptively select which stimuli warrant attention. Much of the time, attention is directed towards stimuli that are relevant for current goals. However, things that have proven important in an organisms' personal or evolutionary past effectively compete with goal-relevant targets for attention. In humans, one example of this attentional superset is faces: faces attract attention even when they are in competition with immediate goals. Using a combination of behavioral, pharmacological, and electrophysiological techniques in the rhesus macaque, I investigated the physiological, neurobiological, and evolutionary determinants of the attentional capture of faces. First, I show that the prioritization of faces is evolutionarily conserved in primates. Face distractors also capture attention in rhesus macaques, a species of old world monkey, successfully competing with task goals for limited attentional resources. Importantly, the same classes of faces have the greatest attentional effects in both monkeys and humans. Further, I describe behavioral evidence that subcortical systems contribute to the attentional salience of faces in this species, proving an initial characterization of the neural mechanisms that may mediate this effect. Next, I examine the interaction between pupil size and vigilance for faces. A focal increase in luminance has long been known to provoke pupil constriction, but here I show that the pupil response to a flashed distractor is proportional to the allocation of attention to that image. Pupil constriction may provide a novel implicit metric of stimulus attention. In particular, face images provoked greater pupil constriction than non-face images. Moreover, I also find that baseline pupil size is a strong predictor of distractor interference, suggesting that arousal may modulate social vigilance. Therefore, I next examined the activity of single neurons within dorsal anterior cingulate cortex (dACC), a region implicated in task performance across a wide variety of tasks, but which also has strong connections to subcortical neuromodulatory centers responsible for regulating arousal. I find that the dACC discriminates between social and nonsocial distractors, scales with distractor attention, and predicts adjustments in arousal and vigilance state on upcoming trials. This is consistent with a model in which dACC supports task performance through regulating arousal. Finally, I turn to oxytocin (OT), a neuromodulatory hormone released during affiliative social interactions that is also implicated in regulating arousal. Though typically thought to generally enhance social attention, I report multiple circumstances in which OT suppresses, rather than enhances, vigilance for faces. This suggests a mechanism through which affiliative social interactions can reduce social vigilance, permitting more relaxed social interactions. Together, these results highlight an evolutionarily conserved neural circuit important for the adaptive, contextual modulation of reflexive face attention, a behavior that is compromised in both anxiety disorders and autism.
Item Open Access Genetic influences on social attention in free-ranging rhesus macaques.(Animal behaviour, 2015-05) Watson, KK; Li, D; Brent, LJN; Horvath, JE; Gonzalez-Martinez, J; Lambides, Ruiz-A; Robinson, AG; Skene, JHP; Platt, MLAn ethological approach to attention predicts that organisms orient preferentially to valuable sources of information in the environment. For many gregarious species, orienting to other individuals provides valuable social information but competes with food acquisition, water consumption and predator avoidance. Individual variation in vigilance behaviour in humans spans a continuum from inattentive to pathological levels of interest in others. To assess the comparative biology of this behavioural variation, we probed vigilance rates in free-ranging macaques during water drinking, a behaviour incompatible with the gaze and postural demands of vigilance. Males were significantly more vigilant than females. Moreover, vigilance showed a clear genetic component, with an estimated heritability of 12%. Monkeys carrying a relatively infrequent 'long' allele of TPH2, a regulatory gene that influences serotonin production in the brain, were significantly less vigilant compared to monkeys that did not carry the allele. These findings resonate with the hypothesis that the serotonin pathway regulates vigilance in primates and by extension provoke the idea that individual variation in vigilance and its underlying biology may be adaptive rather than pathological.Item Open Access Polymorphic variants of Fc receptors and antibodies derived from humans and rhesus macaques exhibit differential binding(2017-05-12) Penny, CaitlinImmune effector functions often depend on the fragment crystallizable (Fc) region of antibodies binding with Fc receptors (FcRs) on immune cells to trigger various responses. Polymorphisms in both Fc and FcR genes in humans and rhesus macaques have been demonstrated to alter the strength of this binding and consequently the immune response that is elicited. Rhesus macaques are often studied as an animal model for AIDS-like diseases, although he diversity of their FcRs has not yet been well characterized. Rhesus have more variation in their FcR genes, but less variation among IgG subclasses compared to humans. I hypothesize that the strength of signaling and subsequent immune responses caused by FcR-bearing cells will be regulated by the strength of Fc binding and the expression levels of FcRs on effector cells. To test this hypothesis, a more accurate genome map of human and rhesus macaques must be compiled, and methods developed to characterize interactions between polymorphic variants of FcRs and antibodies. I devised an ELISA protocol to test the hypothesis that known human and rhesus macaque FcR polymorphisms have differing binding affinities to antibody variants. My results suggest that ELISA assays can measure the strength of binding between variants of FcRs and antibodies to characterize interactions between these molecules. Future work should use similar ELISA techniques as well as immune complexes suspended in solution to distinguish the differing responses among a wider variety of both human and macaque polymorphisms within both FcR and antibody genes.Item Open Access Probabilistic inferential decision-making under time pressure in rhesus macaques (Macaca mulatta)(Journal of Comparative Psychology) Toader, Andrew; Rao, Hrishikesh; Ryoo, Minyoung; Bohlen, Martin; Cruger, Jessi; Oh-Descher, Hanna; Ferrari, Silvia; Egner, Tobias; Beck, Jeffrey; Sommer, MarcDecisions often involve the consideration of multiple cues, each of which may inform selection on the basis of learned probabilities. Our ability to use probabilistic inference for decisions is bounded by uncertainty and constraints such as time pressure. Previous work showed that when humans choose between visual objects in a multiple-cue, probabilistic task, they cope with time pressure by discounting the least informative cues, an example of satisficing or “good enough” decision-making. We tested two rhesus macaques (Macaca mulatta) on a similar task to assess their capacity for probabilistic inference and satisficing in comparison with humans. On each trial, a monkey viewed two compound stimuli consisting of four cue dimensions. Each dimension (e.g., color) had two possible states (e.g., red or blue) with different probabilistic weights. Selecting the stimulus with highest total weight yielded higher odds of receiving reward. Both monkeys learned the assigned weights at high accuracy. Under time pressure, both monkeys were less accurate as a result of decreased use of cue information. One monkey adopted the same satisficing strategy used by humans, ignoring the least informative cue dimension. Both monkeys, however, exhibited a strategy not reported for humans, a “group-the-best” strategy in which the top two cues were used similarly despite their different assigned weights. The results validate macaques as an animal model of probabilistic decision-making, establishing their capacity to discriminate between objects using at least four visual dimensions simultaneously. The time pressure data suggest caution, however, in using macaques as models of human satisficing.Item Open Access Viral evolution in a pediatric rhesus macaque model of HIV therapy and rebound(2019-04) Mangold, JesseIn 2017, approximately 180,000 infants were infected with HIV and 1.8 million children were living with HIV globally. While lifelong combination antiretroviral therapy (ART) can effectively suppress virus replication, ART is not curative due to the establishment of stable latent viral reservoirs immediately after infection. A functional cure able to achieve sustained viral remission will be required to attain an ART-free life. Our study goal was to characterize the kinetics of Simian-Human Immunodeficiency Virus (SHIV) evolution and viral rebound in infant and adult preclinical models of HIV reservoir on ART. In this study, 6 infant and adult rhesus macaques (RMs) were infected with Simian-Human Immunodeficiency Virus (SHIV).C.CH0505.375H.dCT virus via oral and intravenous challenge, respectively. Twelve weeks post infection (wpi), infant and adult RMs were placed on ART for 8 and 12 weeks, respectively. ART was then interrupted and kinetics of viral rebound was measured using qRT-PCR. Viral diversity was measured pre- and post-ART using single genome amplification and sequencing of the HIV env gene. Plasma viral RNA (vRNA) in infants and adults displayed similar kinetics until ART initiation, peaking at 2 wpi. Upon ART initiation, plasma vRNA load was suppressed in infants and adults to undetectable levels within 2-4 weeks. Post-ART, 5/6 infant and 3/6 adult RMs rebounded to >150 vRNA copies/ml of plasma within 1-3 weeks. Pre-ART and post-ART, HIV env sequence diversity was greater in adult plasma viruses than in infant plasma viruses, with average pairwise distance values of 0.007 and 0.005, respectively. Post-ART, infant plasma viruses are more closely related to pre-ART viruses than are adult plasma viruses, perhaps due to less immune pressure in infants. These findings further delineate the clinically relevant differences in HIV env genetic diversity between infants and adults and emphasize the clear need for highly relevant, preclinical models for the development of pediatric-specific therapeutic and curative strategies to achieve an HIV-free generation.